Suppr超能文献

丝氨酸β-内酰胺酶和 DD-肽酶催化的 N-(苯乙酰基)-α-羟基甘氨酸酯的水解动力学和立体化学。

Kinetics and stereochemistry of hydrolysis of an N-(phenylacetyl)-α-hydroxyglycine ester catalyzed by serine β-lactamases and DD-peptidases.

机构信息

Department of Chemistry, Wesleyan University, Lawn Ave., Middletown, CT 06459, USA.

出版信息

Org Biomol Chem. 2012 Sep 28;10(36):7356-62. doi: 10.1039/c2ob25585e.

Abstract

The α-hydroxydepsipeptide 3-carboxyphenyl N-(phenylacetyl)-α-hydroxyglycinate (5) is a quite effective substrate of serine β-lactamases and low molecular mass DD-peptidases. The class C P99 and ampC β-lactamases catalyze the hydrolysis of both enantiomers of 5, although they show a strong preference for one of them. The class A TEM-2 and class D OXA-1 β-lactamases and the Streptomyces R61 and Actinomadura R39 DD-peptidases catalyze hydrolysis of only one enantiomer of at any significant rate. Experiments show that all of the above enzymes strongly prefer the same enantiomer, a surprising result since β-lactamases usually prefer L(S) enantiomers and DD-peptidases D(R). Product analysis, employing peptidylglycine α-amidating lyase, showed that the preferred enantiomer is D(R). Thus, it is the β-lactamases that have switched preference rather than the DD-peptidases. Molecular modeling of the P99 β-lactamase active site suggests that the α-hydroxyl 5 of may interact with conserved Asn and Lys residues. Both α-hydroxy and α-amido substituents on a glycine ester substrate can therefore enhance its productive interaction with the β-lactamase active site, although their effects are not additive; this may also be true for inhibitors.

摘要

α-羟脒基二肽 3-羧基苯 N-(苯乙酰基)-α-羟基甘氨酸酯(5)是丝氨酸β-内酰胺酶和低分子量 DD-肽酶的相当有效的底物。C 类 P99 和 ampCβ-内酰胺酶催化 5 的两种对映异构体的水解,尽管它们对其中之一表现出强烈的偏好。A 类 TEM-2 和 D 类 OXA-1β-内酰胺酶以及链霉菌 R61 和 Actinomadura R39 DD-肽酶仅以任何显著的速率催化一种对映异构体的水解。实验表明,所有上述酶都强烈偏爱相同的对映异构体,这是一个令人惊讶的结果,因为β-内酰胺酶通常优先选择 L(S)对映异构体,而 DD-肽酶则优先选择 D(R)对映异构体。采用肽基甘氨酸α-酰胺化酶进行产物分析表明,优先的对映异构体为 D(R)。因此,是β-内酰胺酶改变了它们的偏好,而不是 DD-肽酶。P99β-内酰胺酶活性位点的分子建模表明,5 的α-羟基可能与保守的 Asn 和 Lys 残基相互作用。因此,甘氨酸酯底物上的α-羟基和α-酰胺取代基都可以增强其与β-内酰胺酶活性位点的有效相互作用,尽管它们的效果不是加性的;这对于抑制剂也可能是正确的。

相似文献

6
Evidence for an oxyanion hole in serine beta-lactamases and DD-peptidases.
Biochem J. 1988 Dec 1;256(2):669-72. doi: 10.1042/bj2560669.
7
Peptidase activity of beta-lactamases.
Biochem J. 1999 Jul 15;341 ( Pt 2)(Pt 2):409-13.
9
β-Lactamases: Why and How.
J Med Chem. 2016 Sep 22;59(18):8207-20. doi: 10.1021/acs.jmedchem.6b00448. Epub 2016 May 27.
10
Serendipitous discovery of α-hydroxyalkyl esters as β-lactamase substrates.
Biochemistry. 2010 Dec 14;49(49):10496-506. doi: 10.1021/bi101071r. Epub 2010 Nov 18.

本文引用的文献

1
Serendipitous discovery of α-hydroxyalkyl esters as β-lactamase substrates.
Biochemistry. 2010 Dec 14;49(49):10496-506. doi: 10.1021/bi101071r. Epub 2010 Nov 18.
2
New β-lactam antibiotics and β-lactamase inhibitors.
Expert Opin Ther Pat. 2010 Oct;20(10):1277-93. doi: 10.1517/13543776.2010.515588.
3
Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition.
Drugs. 2010 Apr 16;70(6):651-79. doi: 10.2165/11318430-000000000-00000.
4
Three decades of beta-lactamase inhibitors.
Clin Microbiol Rev. 2010 Jan;23(1):160-201. doi: 10.1128/CMR.00037-09.
5
Synthesis and beta-lactamase reactivity of alpha-substituted phenaceturates.
Bioorg Med Chem. 2006 Oct 15;14(20):7023-33. doi: 10.1016/j.bmc.2006.06.023. Epub 2006 Jun 27.
6
Understanding the longevity of the beta-lactam antibiotics and of antibiotic/beta-lactamase inhibitor combinations.
Biochem Pharmacol. 2006 Mar 30;71(7):930-40. doi: 10.1016/j.bcp.2005.11.012. Epub 2005 Dec 13.
8
Kinetic and structural consequences of the leaving group in substrates of a class C beta-lactamase.
Bioorg Med Chem. 2004 Mar 15;12(6):1537-42. doi: 10.1016/j.bmc.2003.12.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验