Department of Radiology, UCSD Center for Molecular Imaging, University of California San Diego, San Diego, California 92121, USA.
J Nucl Med. 2012 Sep;53(9):1383-91. doi: 10.2967/jnumed.112.105734. Epub 2012 Jul 31.
Arachidonic acid (AA) is found in high concentrations in brain phospholipids and is released as a second messenger during neurotransmission and much more so during neuroinflammation and excitotoxicity. Upregulated brain AA metabolism associated with neuroinflammation has been imaged in rodents using [1-(14)C]AA and with PET in Alzheimer disease patients using [1-(11)C]AA. Radiotracer brain AA uptake is independent of cerebral blood flow, making it an ideal tracer despite altered brain functional activity. However, the 20.4-min radioactive half-life of (11)C-AA and challenges of routinely synthesizing (11)C fatty acids limit their translational utility as PET biomarkers.
As a first step to develop a clinically useful (18)F-fluoroarachidonic acid ((18)F-FAA) with a long radioactive half-life of 109.8 min, we report here a high-yield stereoselective synthetic method of nonradioactive 20-(19)F-FAA. We tested its in vivo pharmacokinetics by infusing purified nonradioactive (19)F-FAA intravenously for 5 min at 2 doses in unanesthetized mice and measured its plasma and brain distribution using gas chromatography-mass spectrometry.
Incorporation coefficients of injected (19)F-FAA into brain phospholipids (ratio of brain (19)F-FAA concentration to plasma input function) were 3- to 29-fold higher for choline glycerophospholipid and phosphatidylinositol than for ethanolamine glycerophospholipid and phosphatidylserine at each of the 2 tested doses. The selectivities and values of incorporation coefficients were comparable to those reported after [1-(14)C]AA (the natural arachidonate) infusion in mice.
These results suggest that it would be worthwhile to translate our stereoselective synthetic method for (19)F-FAA to synthesize positron-emitting (18)F-FAA for human brain AA metabolism in neuroinflammatory disorders such as Alzheimer disease.
花生四烯酸 (AA) 在脑磷脂中含量很高,作为神经递质传递和神经炎症及兴奋毒性过程中的第二信使释放。用 [1-(14)C]AA 在啮齿动物中成像发现,与神经炎症相关的脑 AA 代谢上调,用 [1-(11)C]AA 在阿尔茨海默病患者中用 PET 成像发现。放射性示踪剂脑 AA 摄取与脑血流无关,使其成为一种理想的示踪剂,尽管脑功能活动发生改变。然而,(11)C-AA 的放射性半衰期为 20.4 分钟,以及常规合成 (11)C 脂肪酸的挑战限制了其作为 PET 生物标志物的转化应用。
为了开发一种具有长放射性半衰期 109.8 分钟的临床有用的 (18)F-氟代花生四烯酸 ((18)F-FAA),我们在此报告了一种非放射性 20-(19)F-FAA 的高产立体选择性合成方法。我们通过在未麻醉的小鼠中静脉内输注 5 分钟,以 2 种剂量输注纯化的非放射性 (19)F-FAA,测试其体内药代动力学,并使用气相色谱-质谱法测量其在血浆和脑中的分布。
在 2 种测试剂量下,注入的 (19)F-FAA 与脑磷脂的掺入系数(脑 (19)F-FAA 浓度与血浆输入函数的比值)对于胆碱甘油磷脂和磷脂酰肌醇是乙醇胺甘油磷脂和磷脂酰丝氨酸的 3-29 倍。在每种测试剂量下,掺入系数的选择性和值与在小鼠中输注 [1-(14)C]AA(天然花生四烯酸)后报道的值相当。
这些结果表明,值得将我们用于 (19)F-FAA 的立体选择性合成方法转化为用于神经炎症性疾病(如阿尔茨海默病)中人类脑 AA 代谢的正电子发射 (18)F-FAA 的合成。