Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
J Gen Physiol. 2012 Aug;140(2):109-37. doi: 10.1085/jgp.201210802.
A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IK(V)) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IK(V) displays the canonical hallmarks of K(V) channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gK(V)) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IK(V). Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IK(V), but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IK(V) records. A two-channel model that faithfully simulates IK(V) records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gK(V), and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IK(V)1.4 and IK(V)3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IK(V) resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IK(V) records. Normalized peak attenuations showed the same voltage dependence as peak IK(V) plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IK(V) and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gK(V) in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that K(V) channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IK(V) arises from the TTS.
采用双微电极电压钳和横向管状系统(TTS)膜电位变化的光学测量,对用膜电位染料二-8-ANEPPs 染色的鼠肌纤维中的延迟整流钾电流(IK(V))进行了表征。在完整的纤维中,IK(V)表现出 K(V)通道的典型特征:电压依赖性延迟激活和时间依赖性衰减。峰电导(gK(V))的电压依赖性仅通过双 Boltzmann 拟合来解释,这表明 IK(V)至少有两个通道贡献。渗透压处理的纤维显示 TTS 明显断开,显示出较小的 IK(V),但与完整纤维的电压依赖性和时间衰减相似。这表明失活可能是 IK(V)记录衰减的主要原因。一个能够真实模拟渗透压处理纤维中 IK(V)记录的双通道模型,由一个低阈值和陡电压依赖性通道(通道 A)组成,该通道贡献了约 31%的 gK(V),以及一个更丰富的高阈值通道(通道 B),其电压依赖性较浅。免疫印迹显示出 IK(V)1.4 和 IK(V)3.4 通道的显著表达。在完整纤维中,矩形去极化脉冲引起 di-8-ANEPPs 瞬间呈阶跃式变化,使纤维电惰性。相比之下,IK(V)的激活导致光学瞬变的时间和电压依赖性衰减,与 IK(V)记录的峰值同时发生。归一化峰值衰减与峰值 IK(V)图具有相同的电压依赖性。一个包括通道 A 和 B 以及 TTS 中的 K 扩散的径向电缆模型,用于模拟 IK(V)和平均 TTS 电压变化。模型预测和实验数据进行了比较,以确定 TTS 中的 gK(V)有多少同时解释了电和光数据。最佳预测表明,K(V)通道在肌膜和 TTS 膜中的分布大致相等;在这些条件下,超过 70%的 IK(V)来自 TTS。