Department of Gynecology-Obstetrics, The State University of New York, University at Buffalo, Buffalo, New York, USA.
Biophys J. 2011 Jan 5;100(1):11-21. doi: 10.1016/j.bpj.2010.11.011.
Kv1.4 channels are Shaker-related voltage-gated potassium channels with two distinct inactivation mechanisms. Fast N-type inactivation operates by a ball-and-chain mechanism. Slower C-type inactivation is not so well defined, but involves intracellular and extracellular conformational changes of the channel. We studied the interaction between inactivation mechanisms using two-electrode voltage-clamp of Kv1.4 and Kv1.4ΔN (amino acids 2-146 deleted to remove N-type inactivation) heterologously expressed in Xenopus oocytes. We manipulated C-type inactivation by introducing a lysine-tyrosine point mutation (K532Y, equivalent to Shaker T449Y) that diminishes C-type inactivation. We used experimental data to develop a comprehensive computer model of Kv1.4 channels to determine the interaction between activation and N- and C-type inactivation mechanisms needed to replicate the experimental data. C-type inactivation began at lower voltage preactivated states, whereas N-type inactivation was coupled directly to the open state. A model with distinct N- and C-type inactivated states was not able to reproduce experimental data, and direct transitions between N- and C-type inactivated states were required, i.e., there is coupling between N- and C-type inactivated states. C-type inactivation is the rate-limiting step determining recovery from inactivation, so understanding C-type inactivation, and how it is coupled to N-type inactivation, is critical in understanding how channels act to repetitive stimulation.
Kv1.4 通道是 Shaker 相关的电压门控钾通道,具有两种不同的失活机制。快速的 N 型失活通过球链机制起作用。较慢的 C 型失活定义不那么明确,但涉及通道的细胞内和细胞外构象变化。我们使用双电极电压钳研究了 Kv1.4 和 Kv1.4ΔN(缺失氨基酸 2-146 以去除 N 型失活)异源表达在非洲爪蟾卵母细胞中的失活机制之间的相互作用。我们通过引入赖氨酸-酪氨酸点突变(K532Y,相当于 Shaker T449Y)来操纵 C 型失活,该突变减弱了 C 型失活。我们使用实验数据开发了 Kv1.4 通道的综合计算机模型,以确定复制实验数据所需的激活和 N 型和 C 型失活机制之间的相互作用。C 型失活在较低的电压预激活状态下开始,而 N 型失活直接与开放状态耦合。具有不同的 N 型和 C 型失活状态的模型无法复制实验数据,并且需要直接在 N 型和 C 型失活状态之间进行转换,即 N 型和 C 型失活状态之间存在耦合。C 型失活是决定失活后恢复的限速步骤,因此理解 C 型失活以及它如何与 N 型失活耦合,对于理解通道如何对重复刺激起作用至关重要。