Shen Bin, Zhou Hong, Chen Zhiren, Wang Zhifei, Sheng Yujie, Chen Jia, Geng Binbin
School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, P.R. China.
J Nanosci Nanotechnol. 2012 May;12(5):3931-7. doi: 10.1166/jnn.2012.6157.
Mn2+ ions doped ZnS semiconductor nanocrystals (ZnS:Mn NCs) were synthesized using colloidal chemical method at 70 degrees C without any capping agents. The as-prepared undoped ZnS and ZnS:Mn NCs were characterized by UV-Vis absorption spectra, fluorescent emission spectra, X-ray powder diffraction (XRD), inductively coupled plasma analysis (ICP), X-ray photoelectron spectroscopy (XPS), Dynamic light scattering (DLS), cyclic voltammogram and electronic transmission microscopy (TEM). The dependence of photoluminescence of ZnS:Mn NCs on dopant concentration was studied. The results show that Mn2+ ions mainly stay at ZnS nanocystal surface, and Mn2+-surface defect state complex was formed, as a result of which, surface defect emission of ZnS nanocrystals was substituted with Mn2+-related PL emission. The strongest fluorescent emission intensity was obtain at 1.85 at% Mn2+ doped ZnS:Mn NCs. The Mn2+ doped ZnS:Mn NCs are of 5 nm in diameter. The emission peak at 575 nm is attributed to d-d (4T1 --> 6A1) transition of Mn2+ ions. The existence of Mn2+-related photoluminescence could be well correlated with cyclic voltammogram of Mn2+-doped NCs, where pair of oxidation and reduction peaks were clearly observed due to the doped Mn2+ ions. The adsorbed Mn2+ ions on ZnS NCs produced neither Mn2+ emission nor redox peaks. For heavily doped ZnS:Mn NCs (4.87 at%), redox peaks gap in cyclic voltammogram became larger and new oxidation peak appeared. Correspondingly, when the Mn2+ doping concentration reached 4.87 at%, the Mn2+-related emission totally disappears due to the Mn-Mn interactions. This work implys that electrochemical technique is possibly an useful tool to probe the local structure of doped Mn2+ ions.
采用胶体化学方法在70摄氏度下合成了未添加任何封端剂的Mn2+离子掺杂的ZnS半导体纳米晶体(ZnS:Mn纳米晶)。通过紫外可见吸收光谱、荧光发射光谱、X射线粉末衍射(XRD)、电感耦合等离子体分析(ICP)、X射线光电子能谱(XPS)、动态光散射(DLS)、循环伏安图和电子透射显微镜(TEM)对所制备的未掺杂ZnS和ZnS:Mn纳米晶进行了表征。研究了ZnS:Mn纳米晶的光致发光对掺杂剂浓度的依赖性。结果表明,Mn2+离子主要停留在ZnS纳米晶表面,形成了Mn2+-表面缺陷态复合体,因此,ZnS纳米晶体的表面缺陷发射被与Mn2+相关的PL发射所取代。在Mn2+掺杂量为1.85 at%的ZnS:Mn纳米晶中获得了最强的荧光发射强度。Mn2+掺杂的ZnS:Mn纳米晶直径为5 nm。575 nm处的发射峰归因于Mn2+离子的d-d(4T1→6A1)跃迁。与Mn2+相关的光致发光的存在与Mn2+掺杂纳米晶的循环伏安图有很好的相关性,由于掺杂的Mn2+离子,在循环伏安图中清晰地观察到一对氧化峰和还原峰。吸附在ZnS纳米晶上的Mn2+离子既不产生Mn2+发射也不产生氧化还原峰。对于重掺杂的ZnS:Mn纳米晶(4.87 at%),循环伏安图中的氧化还原峰间距变大并出现新的氧化峰。相应地,当Mn2+掺杂浓度达到4.87 at%时,由于Mn-Mn相互作用,与Mn2+相关的发射完全消失。这项工作表明,电化学技术可能是探测掺杂Mn2+离子局部结构的有用工具。