Suppr超能文献

不同表面封端对简单氨基酸封端的ZnS:Mn纳米颗粒应用的影响

Differential Surface Capping Effects on the Applications of Simple Amino-Acid-Capped ZnS:Mn Nanoparticles.

作者信息

Park Jinwoo, Hwang Cheong-Soo

机构信息

Department of Chemistry, Dankook University, Cheonan 31116, Korea.

出版信息

Micromachines (Basel). 2021 Aug 31;12(9):1064. doi: 10.3390/mi12091064.

Abstract

Water-dispersible ZnS:Mn nanoparticles (NPs) were prepared by capping their surface with simple structured amino acids: l-alanine (Ala), l-glycine (Gly), and l-valine (Val) molecules, which have very similar structures except for the terminal organic functional groups. The detailed characterization works for the prepared colloidal NPs were performed using various spectroscopic methods. In particular, the NPs commonly showed UV/visible absorption peaks around 325 nm and PL emission peaks around 590 nm, corresponding to the wavelength of orange color light. In this study, these amino-acid-capped NPs were applied as optical photosensors in the detection of specific divalent transition metal cations in the same conditions. Consequently, all three NPs showed exclusive fluorescence quenching effects upon the addition of Cu (II) metal ions, whereas their quenching efficiencies were quite different to each other. These experimental results indicated that the Gly-ZnS:Mn NPs (k = 4.09 × 10 M) can be the most effective optical photosensor for the detection of Cu ions in water among the three NPs in the same conditions. This study showed that the steric effect of the capping ligand can be one of the key factors affecting the sensor activities of the ZnS:Mn NPs.

摘要

通过用结构简单的氨基酸(L-丙氨酸(Ala)、L-甘氨酸(Gly)和L-缬氨酸(Val)分子)包覆其表面来制备水分散性硫化锌锰纳米颗粒(NPs),这些氨基酸分子除末端有机官能团外结构非常相似。使用各种光谱方法对制备的胶体纳米颗粒进行了详细的表征工作。特别是,这些纳米颗粒通常在325nm左右显示紫外/可见吸收峰,在590nm左右显示光致发光发射峰,对应于橙色光的波长。在本研究中,这些氨基酸包覆的纳米颗粒在相同条件下作为光学光传感器用于检测特定的二价过渡金属阳离子。结果,在添加铜(II)金属离子时,所有三种纳米颗粒都表现出独特的荧光猝灭效应,但其猝灭效率彼此差异很大。这些实验结果表明,在相同条件下,甘氨酸包覆的硫化锌锰纳米颗粒(k = 4.09 × 10 M)可能是三种纳米颗粒中检测水中铜离子最有效的光学光传感器。这项研究表明,包覆配体的空间效应可能是影响硫化锌锰纳米颗粒传感器活性的关键因素之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1672/8467170/49bdeeb1f3ac/micromachines-12-01064-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验