University of Zurich, Zurich, Switzerland.
Mol Plant Microbe Interact. 2012 Sep;25(9):1198-208. doi: 10.1094/MPMI-03-12-0070-R.
Many strains of the phytopathogenic bacterium Pseudomonas syringae pv. syringae synthesize the virulence factor syringolin A, which irreversibly inactivates the eukaryotic proteasome. Syringolin A, a peptide derivative, is synthesized by a mixed nonribosomal peptide/polyketide synthetase encoded by five clustered genes, sylA to sylE. Biosynthesis of syringolin A, previously shown to be dependent on the GacS/GacA two-component system, occurs in planta and in vitro but only under still culture conditions in a defined medium. Here, we show that the sylC, sylD, and sylE genes of P. syringae pv. syringae B301D-R form an operon transcribed by promoter sequences located between the sylCDE operon and the sylB gene residing on opposite strands. Assays of overlapping sylB and sylCDE promoter deletions translationally fused to the lacZ gene defined promoter sequences required for gene activity both in vitro and in planta. Activation of both promoters depended on the sylA gene encoding a helix-turn-helix (HTH) LuxR-type transcription factor which was shown to directly bind to the promoters. Activity of the sylA gene, in turn, required a functional salA gene, which also encodes an HTH LuxR-type transcription factor. Furthermore, evidence is presented that acyl-homoserine lactone-mediated quorum-sensing regulation is not involved in syringolin A biosynthesis but that oxygen concentration appears to play a role.
许多植物病原细菌丁香假单胞菌 pv. 丁香假单胞菌合成毒性因子丁香霉素 A,它不可逆地使真核蛋白酶体失活。丁香霉素 A 是一种肽衍生物,由 5 个簇集基因 sylA 到 sylE 编码的混合非核糖体肽/聚酮合酶合成。丁香霉素 A 的生物合成以前被证明依赖于 GacS/GacA 双组分系统,它在植物体内和体外发生,但仅在特定培养基的静止培养条件下发生。在这里,我们表明丁香假单胞菌 pv. 丁香假单胞菌 B301D-R 的 sylC、sylD 和 sylE 基因形成一个操纵子,由位于 sylCDE 操纵子和位于相反链上的 sylB 基因之间的启动子序列转录。重叠 sylB 和 sylCDE 启动子缺失的翻译融合到 lacZ 基因的测定表明,无论是在体外还是在体内,都需要启动子序列才能进行基因活性。两个启动子的激活都依赖于 sylA 基因,该基因编码一个螺旋-转角-螺旋 (HTH) LuxR 型转录因子,该因子被证明直接结合到启动子上。sylA 基因的活性反过来又需要一个功能正常的 salA 基因,该基因也编码一个 HTH LuxR 型转录因子。此外,有证据表明,酰基高丝氨酸内酯介导的群体感应调节不参与丁香霉素 A 的生物合成,但氧浓度似乎起作用。