Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
BMC Biochem. 2009 Oct 28;10:26. doi: 10.1186/1471-2091-10-26.
Syringolin A, an important virulence factor in the interaction of the phytopathogenic bacterium Pseudomonas syringae pv. syringae B728a with its host plant Phaseolus vulgaris (bean), was recently shown to irreversibly inhibit eukaryotic proteasomes by a novel mechanism. Syringolin A is synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase and consists of a tripeptide part including a twelve-membered ring with an N-terminal valine that is joined to a second valine via a very unusual ureido group. Analysis of sequence and architecture of the syringolin A synthetase gene cluster with the five open reading frames sylA-sylE allowed to formulate a biosynthesis model that explained all structural features of the tripeptide part of syringolin A but left the biosynthesis of the unusual ureido group unaccounted for.
We have cloned a 22 kb genomic fragment containing the sylA-sylE gene cluster but no other complete gene into the broad host range cosmid pLAFR3. Transfer of the recombinant cosmid into Pseudomonas putida and P. syringae pv. syringae SM was sufficient to direct the biosynthesis of bona fide syringolin A in these heterologous organisms whose genomes do not contain homologous genes. NMR analysis of syringolin A isolated from cultures grown in the presence of NaH(13)CO(3) revealed preferential (13)C-labeling at the ureido carbonyl position.
The results show that no additional syringolin A-specific genes were needed for the biosynthesis of the enigmatic ureido group joining two amino acids. They reveal the source of the ureido carbonyl group to be bicarbonate/carbon dioxide, which we hypothesize is incorporated by carbamylation of valine mediated by the sylC gene product(s). A similar mechanism may also play a role in the biosynthesis of other ureido-group-containing NRPS products known largely from cyanobacteria.
在植物病原菌丁香假单胞菌 pv. 丁香致病变种(Pseudomonas syringae pv. syringae B728a)与其宿主植物菜豆(Phaseolus vulgaris)相互作用中,一种重要的毒力因子 Syringolin A 通过一种新的机制不可逆地抑制真核生物蛋白酶体。Syringolin A 由混合非核糖体肽合成酶/聚酮合酶合成,由三肽部分组成,包括一个具有 N 端缬氨酸的十二元环,该环通过一个非常不寻常的脲基与第二个缬氨酸相连。对 Syringolin A 合成酶基因簇与五个开放阅读框 sylA-sylE 的序列和结构进行分析,提出了一个生物合成模型,该模型解释了 Syringolin A 三肽部分的所有结构特征,但未说明不寻常脲基的生物合成。
我们克隆了一个包含 sylA-sylE 基因簇但不包含其他完整基因的 22 kb 基因组片段到广泛宿主范围的 cosmid pLAFR3 中。将重组 cosmid 转移到恶臭假单胞菌和丁香假单胞菌 pv. 丁香致病变种 SM 中,足以在这些基因组中不包含同源基因的异源生物中指导真正 Syringolin A 的生物合成。在存在 NaH(13)CO(3)的培养物中分离的 Syringolin A 的 NMR 分析显示,脲羰基位置优先(13)C 标记。
结果表明,合成神秘脲基连接两个氨基酸不需要额外的 Syringolin A 特异性基因。它们揭示了脲羰基的来源是碳酸氢盐/二氧化碳,我们假设这是通过 sylC 基因产物介导的缬氨酸的氨甲酰化作用掺入的。类似的机制也可能在其他已知主要来自蓝藻的含有脲基的 NRPS 产物的生物合成中发挥作用。