Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
J Am Chem Soc. 2012 Aug 22;134(33):13700-7. doi: 10.1021/ja3034526. Epub 2012 Aug 10.
Direct simulations reveal key mechanistic features of early-stage protein translocation and membrane integration via the Sec-translocon channel. We present a novel computational protocol that combines non-equilibrium growth of the nascent protein with microsecond timescale molecular dynamics trajectories. Analysis of multiple, long timescale simulations elucidates molecular features of protein insertion into the translocon, including signal-peptide docking at the translocon lateral gate (LG), large lengthscale conformational rearrangement of the translocon LG helices, and partial membrane integration of hydrophobic nascent-protein sequences. Furthermore, the simulations demonstrate the role of specific molecular interactions in the regulation of protein secretion, membrane integration, and integral membrane protein topology. Salt-bridge contacts between the nascent-protein N-terminus, cytosolic translocon residues, and phospholipid head groups are shown to favor conformations of the nascent protein upon early-stage insertion that are consistent with the Type II (N(cyt)/C(exo)) integral membrane protein topology, and extended hydrophobic contacts between the nascent protein and the membrane lipid bilayer are shown to stabilize configurations that are consistent with the Type III (N(exo)/C(cyt)) topology. These results provide a detailed, mechanistic basis for understanding experimentally observed correlations between integral membrane protein topology, translocon mutagenesis, and nascent-protein sequence.
直接模拟揭示了通过 Sec 转运通道进行早期蛋白质易位和膜整合的关键机制特征。我们提出了一种新的计算方案,该方案将新生蛋白质的非平衡生长与微秒时间尺度的分子动力学轨迹相结合。对多个长时标模拟的分析阐明了蛋白质插入转运通道的分子特征,包括信号肽在转运通道侧门 (LG) 的对接、转运通道 LG 螺旋的大尺度构象重排以及疏水性新生蛋白质序列的部分膜整合。此外,模拟还演示了特定分子相互作用在调节蛋白质分泌、膜整合和整合膜蛋白拓扑结构中的作用。新生蛋白 N 端、胞质转运通道残基和磷脂头部之间的盐桥接触被证明有利于早期插入阶段新生蛋白的构象,这些构象与 II 型 (N(cyt)/C(exo)) 整合膜蛋白拓扑结构一致,并且新生蛋白和膜脂质双层之间的扩展疏水接触被证明稳定了与 III 型 (N(exo)/C(cyt)) 拓扑结构一致的构象。这些结果为理解实验观察到的整合膜蛋白拓扑结构、转运通道突变和新生蛋白序列之间的相关性提供了详细的、机制性的基础。