Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Cell Rep. 2012 Oct 25;2(4):927-37. doi: 10.1016/j.celrep.2012.08.039. Epub 2012 Oct 19.
We present a coarse-grained modeling approach that spans the nanosecond- to minute-timescale dynamics of cotranslational protein translocation. The method enables direct simulation of both integral membrane protein topogenesis and transmembrane domain (TM) stop-transfer efficiency. Simulations reveal multiple kinetic pathways for protein integration, including a mechanism in which the nascent protein undergoes slow-timescale reorientation, or flipping, in the confined environment of the translocon channel. Competition among these pathways gives rise to the experimentally observed dependence of protein topology on ribosomal translation rate and protein length. We further demonstrate that sigmoidal dependence of stop-transfer efficiency on TM hydrophobicity arises from local equilibration of the TM across the translocon lateral gate, and it is predicted that slowing ribosomal translation yields decreased stop-transfer efficiency in long proteins. This work reveals the balance between equilibrium and nonequilibrium processes in protein targeting, and it provides insight into the molecular regulation of the Sec translocon.
我们提出了一种粗粒化建模方法,涵盖了共翻译蛋白易位的纳秒到分钟时间尺度的动力学。该方法能够直接模拟整合膜蛋白的拓扑发生和跨膜结构域(TM)停止转移效率。模拟揭示了蛋白质整合的多种动力学途径,包括新生蛋白质在易位通道的受限环境中经历慢时间尺度重定向或翻转的机制。这些途径之间的竞争导致了实验观察到的蛋白质拓扑结构与核糖体翻译速度和蛋白质长度的依赖性。我们进一步证明,TM 疏水性对停止转移效率的 S 型依赖性来自于 TM 在易位器横向门中的局部平衡,并且预测核糖体翻译速度的降低会导致长蛋白的停止转移效率降低。这项工作揭示了蛋白质靶向中平衡和非平衡过程之间的平衡,并为 Sec 易位器的分子调节提供了见解。