Suppr超能文献

GLIC 通道的疏水门的干燥转变阻止离子传导。

Drying transition in the hydrophobic gate of the GLIC channel blocks ion conduction.

机构信息

Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.

出版信息

Biophys J. 2012 Jul 18;103(2):219-27. doi: 10.1016/j.bpj.2012.06.003. Epub 2012 Jul 17.

Abstract

The theoretical prediction of water drying transitions near nonpolar surfaces has stimulated an intensive search for biological processes exploiting this extreme form of hydrophobicity. Here we quantitatively demonstrate that drying of a hydrophobic constriction is the major determinant of ion conductance in the GLIC pentameric ion channel. Molecular-dynamics simulations show that in the closed state, the channel conductance is ∼12 orders-of-magnitude lower than in the open state. This large drop in conductance is remarkable because even in the functionally closed conformation the pore constriction remains wide enough for the passage of sodium ions, aided by a continuous bridge of ∼12 water molecules. However, we find that the free energy cost of hydrating the hydrophobic gate is large, accounting almost entirely for the energetic barrier blocking ion passage. The free energies of transferring a sodium ion into a prehydrated gate in functionally closed and open states differ by only 1.2 kcal/mol, compared to an 11 kcal/mol difference in the costs of hydrating the hydrophobic gate. Conversely, ion desolvation effects play only minor roles in GLIC ion channel gating. Our simulations help rationalize experiments probing the gating kinetics of the nicotinic acetylcholine receptor in response to mutations of pore-lining residues. The molecular character and phase behavior of water should thus be included in quantitative descriptions of ion channel gating.

摘要

非极性表面附近水干燥转变的理论预测激发了人们对利用这种极端疏水性的生物过程的深入研究。在这里,我们定量地证明了疏水收缩的干燥是 GLIC 五聚体离子通道离子电导的主要决定因素。分子动力学模拟表明,在关闭状态下,通道电导比开放状态低约 12 个数量级。这种电导的显著下降是值得注意的,因为即使在功能上关闭的构象中,孔隙收缩仍然足够宽,允许钠离子通过,这得益于大约 12 个水分子的连续桥。然而,我们发现,水合疏水门的自由能成本很大,几乎完全解释了阻止离子通过的能量障碍。与水合疏水门的成本差异为 11 千卡/摩尔相比,在功能上关闭和开放状态下,将钠离子转移到预水合门的自由能差异仅为 1.2 千卡/摩尔。相反,离子去溶剂化效应在 GLIC 离子通道门控中仅起次要作用。我们的模拟有助于解释实验探测烟碱型乙酰胆碱受体对孔衬里残基突变的门控动力学。因此,水的分子特征和相行为应该包括在离子通道门控的定量描述中。

相似文献

1
Drying transition in the hydrophobic gate of the GLIC channel blocks ion conduction.
Biophys J. 2012 Jul 18;103(2):219-27. doi: 10.1016/j.bpj.2012.06.003. Epub 2012 Jul 17.
2
An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics.
Biophys J. 2006 Feb 1;90(3):799-810. doi: 10.1529/biophysj.105.067868. Epub 2005 Nov 11.
3
Ion selectivity mechanism in a bacterial pentameric ligand-gated ion channel.
Biophys J. 2011 Jan 19;100(2):390-8. doi: 10.1016/j.bpj.2010.11.077.
4
Pore opening and closing of a pentameric ligand-gated ion channel.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19814-9. doi: 10.1073/pnas.1009313107. Epub 2010 Nov 1.
5
Ion channel gating: insights via molecular simulations.
FEBS Lett. 2003 Nov 27;555(1):85-90. doi: 10.1016/s0014-5793(03)01151-7.
6
Water and hydrophobic gates in ion channels and nanopores.
Faraday Discuss. 2018 Sep 28;209(0):231-247. doi: 10.1039/c8fd00013a.
7
A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor.
Phys Biol. 2006 Jul 7;3(2):147-59. doi: 10.1088/1478-3975/3/2/007.
8
Mechanism of hydrophobic gating in the acetylcholine receptor channel pore.
J Gen Physiol. 2024 Feb 5;156(2). doi: 10.1085/jgp.202213189. Epub 2023 Dec 28.
9
Structural Mechanism of Ionic Conductivity of the TRPV1 Channel.
Dokl Biochem Biophys. 2023 Feb;508(1):1-5. doi: 10.1134/S1607672922600245. Epub 2023 Jan 18.
10
Pore waters regulate ion permeation in a calcium release-activated calcium channel.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17332-7. doi: 10.1073/pnas.1316969110. Epub 2013 Oct 7.

引用本文的文献

1
Lipid-mediated hydrophobic gating in the BK potassium channel.
Nat Commun. 2025 Aug 9;16(1):7354. doi: 10.1038/s41467-025-61638-9.
2
Ion and water permeation through claudin-10b and claudin-15 paracellular channels.
Comput Struct Biotechnol J. 2024 Nov 13;23:4177-4191. doi: 10.1016/j.csbj.2024.11.025. eCollection 2024 Dec.
3
Electronic Polarization Leads to a Drier Dewetted State for Hydrophobic Gating in the Big Potassium Channel.
J Phys Chem Lett. 2024 Jul 25;15(29):7436-7441. doi: 10.1021/acs.jpclett.4c01359. Epub 2024 Jul 15.
4
Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.
J Chem Theory Comput. 2024 Mar 12;20(5):1897-1911. doi: 10.1021/acs.jctc.4c00013. Epub 2024 Feb 28.
5
Mechanism of hydrophobic gating in the acetylcholine receptor channel pore.
J Gen Physiol. 2024 Feb 5;156(2). doi: 10.1085/jgp.202213189. Epub 2023 Dec 28.
6
Transient water wires mediate selective proton transport in designed channel proteins.
Nat Chem. 2023 Jul;15(7):1012-1021. doi: 10.1038/s41557-023-01210-4. Epub 2023 Jun 12.
7
Inner pore hydration free energy controls the activation of big potassium channels.
Biophys J. 2023 Apr 4;122(7):1158-1167. doi: 10.1016/j.bpj.2023.02.005. Epub 2023 Feb 10.
8
Using Metadynamics To Explore the Free Energy of Dewetting in Biologically Relevant Nanopores.
J Phys Chem B. 2022 Sep 1;126(34):6428-6437. doi: 10.1021/acs.jpcb.2c04157. Epub 2022 Aug 23.
9
Computational methods and theory for ion channel research.
Adv Phys X. 2022;7(1). doi: 10.1080/23746149.2022.2080587.
10
An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine.
Biophys J. 2022 Jan 4;121(1):11-22. doi: 10.1016/j.bpj.2021.12.010. Epub 2021 Dec 8.

本文引用的文献

1
Theory and simulation of ion conduction in the pentameric GLIC channel.
J Chem Theory Comput. 2012 Oct 9;8(10):3759-3768. doi: 10.1021/ct2009279. Epub 2012 Mar 7.
2
Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC.
PLoS Biol. 2011 Jun;9(6):e1001101. doi: 10.1371/journal.pbio.1001101. Epub 2011 Jun 21.
3
Perspectives on: ion selectivity: design principles for K+ selectivity in membrane transport.
J Gen Physiol. 2011 Jun;137(6):479-88. doi: 10.1085/jgp.201010579.
4
Ion selectivity in channels and transporters.
J Gen Physiol. 2011 May;137(5):415-26. doi: 10.1085/jgp.201010577.
5
Temperature dependence of acetylcholine receptor channels activated by different agonists.
Biophys J. 2011 Feb 16;100(4):895-903. doi: 10.1016/j.bpj.2010.12.3727.
6
Ion selectivity mechanism in a bacterial pentameric ligand-gated ion channel.
Biophys J. 2011 Jan 19;100(2):390-8. doi: 10.1016/j.bpj.2010.11.077.
7
Pore opening and closing of a pentameric ligand-gated ion channel.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19814-9. doi: 10.1073/pnas.1009313107. Epub 2010 Nov 1.
9
Water in cavity-ligand recognition.
J Am Chem Soc. 2010 Sep 1;132(34):12091-7. doi: 10.1021/ja1050082.
10
Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14122-7. doi: 10.1073/pnas.1008534107. Epub 2010 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验