UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee, USA.
Biophys J. 2011 Jan 19;100(2):390-8. doi: 10.1016/j.bpj.2010.11.077.
The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2') at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl⁻ in the middle of the pore for both GLIC and the E-2'A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.
来自 Gloeobacter violaceus(GLIC)的质子门控离子通道是真核烟碱型乙酰胆碱受体的原核同源物,对神经递质乙酰胆碱的结合有反应,并介导快速信号转导。最近出现的 GLIC 的高分辨率晶体结构,捕捉到了一个潜在的开放状态,这使得人们能够详细地了解这些通道中的离子传导和选择性机制的原子水平。在此,我们通过构建跨膜区域内钠离子和氯离子的平均力势能曲线,研究了 GLIC 通道中离子传导的障碍和离子选择性的起源。我们的计算表明,GLIC 通道对钠离子的转运是开放的,但对氯离子的转运则存在约 11 kcal/mol 的自由能障碍。我们的综合研究结果确定了观察到的对可渗透离子的偏好的三个不同贡献。首先,在通道的狭窄胞内端有一个由带负电荷的谷氨酸残基(E-2')组成的环,这对离子选择性有很大的贡献。该区域的负静电作用和谷氨酸侧链直接结合阳离子的能力,将强烈有利于钠离子的通过,而阻碍氯离子的转运。其次,我们的结果表明,选择性与通道中央疏水区中钠离子与氯离子的去溶剂化罚分差异有关,存在显著的疏水性贡献。这种疏水性贡献的证据是氯离子在 GLIC 和 E-2'A 突变体的孔中部经历了很大的自由能障碍。最后,还有一个来自通道整体负静电的独特贡献。