Suppr超能文献

瞬态水线介导设计的通道蛋白中质子的选择性传输。

Transient water wires mediate selective proton transport in designed channel proteins.

机构信息

Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA.

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Nat Chem. 2023 Jul;15(7):1012-1021. doi: 10.1038/s41557-023-01210-4. Epub 2023 Jun 12.

Abstract

Selective proton transport through proteins is essential for forming and using proton gradients in cells. Protons are conducted along hydrogen-bonded 'wires' of water molecules and polar side chains, which, somewhat surprisingly, are often interrupted by dry apolar stretches in the conduction pathways, inferred from static protein structures. Here we hypothesize that protons are conducted through such dry spots by forming transient water wires, often highly correlated with the presence of the excess protons in the water wire. To test this hypothesis, we performed molecular dynamics simulations to design transmembrane channels with stable water pockets interspersed by apolar segments capable of forming flickering water wires. The minimalist designed channels conduct protons at rates similar to viral proton channels, and they are at least 10-fold more selective for H over Na. These studies inform the mechanisms of biological proton conduction and the principles for engineering proton-conductive materials.

摘要

通过蛋白质选择性地传输质子对于在细胞中形成和利用质子梯度至关重要。质子沿着氢键连接的水分子和极性侧链“导线”传导,而令人惊讶的是,这些“导线”在传导途径中经常被干燥的非极性区域所打断,这可以从静态蛋白质结构中推断出来。在这里,我们假设质子通过形成瞬态水导线来穿过这些干燥区域,而这些水导线通常与水中多余质子的存在高度相关。为了验证这一假设,我们进行了分子动力学模拟,设计了具有稳定水口袋的跨膜通道,这些水口袋由能够形成闪烁水导线的非极性片段隔开。这种极简设计的通道以类似于病毒质子通道的速率传输质子,并且对 H+的选择性至少比 Na+高 10 倍。这些研究为生物质子传导的机制以及质子导电材料的设计原则提供了信息。

相似文献

1
Transient water wires mediate selective proton transport in designed channel proteins.
Nat Chem. 2023 Jul;15(7):1012-1021. doi: 10.1038/s41557-023-01210-4. Epub 2023 Jun 12.
2
Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
Biophys J. 2002 May;82(5):2304-16. doi: 10.1016/S0006-3495(02)75576-8.
3
Hydrated Excess Protons Can Create Their Own Water Wires.
J Phys Chem B. 2015 Jul 23;119(29):9212-8. doi: 10.1021/jp5095118. Epub 2014 Nov 12.
4
Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules.
Biophys J. 1998 Jul;75(1):33-40. doi: 10.1016/S0006-3495(98)77492-2.
6
Rigidly hydrogen-bonded water molecules facilitate proton transfer in photosystem II.
Phys Chem Chem Phys. 2020 Jul 22;22(28):15831-15841. doi: 10.1039/d0cp00295j.
7
Rectified Proton Grotthuss Conduction Across a Long Water-Wire in the Test Nanotube of the Polytheonamide B Channel.
J Am Chem Soc. 2016 Mar 30;138(12):4168-77. doi: 10.1021/jacs.5b13377. Epub 2016 Mar 21.
8
XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13357-13362. doi: 10.1073/pnas.1705624114. Epub 2017 Aug 23.
9
Proton transfer in water wires in proteins: modulation by local constraint and polarity in gramicidin a channels.
Biophys J. 2007 Sep 1;93(5):1571-9. doi: 10.1529/biophysj.107.109231. Epub 2007 May 11.
10
Interplay of Hydration and Protonation Dynamics in the K-Channel of Cytochrome c Oxidase.
Biomolecules. 2022 Nov 1;12(11):1615. doi: 10.3390/biom12111615.

引用本文的文献

2
Biopolymer Membranes for Osmotic Power Generation in Bionic Applications.
Adv Mater. 2025 Sep;37(36):e07770. doi: 10.1002/adma.202507770. Epub 2025 Aug 1.
3
Molecular mechanism of exchange coupling in CLC chloride/proton antiporters.
bioRxiv. 2025 May 9:2025.05.08.652968. doi: 10.1101/2025.05.08.652968.
4
Ion channel structure and function of the MERS coronavirus E protein.
Sci Adv. 2025 Jul 11;11(28):eadx1788. doi: 10.1126/sciadv.adx1788. Epub 2025 Jul 9.
5
Sequence-dependent scale for translocon-mediated insertion of interfacial helices in membranes.
Sci Adv. 2025 Feb 21;11(8):eads6804. doi: 10.1126/sciadv.ads6804. Epub 2025 Feb 19.
6
An Unexpected Water Channel in the Light-Harvesting Complex of a Diatom: Implications for the Switch between Light Harvesting and Photoprotection.
ACS Phys Chem Au. 2024 Aug 21;5(1):47-61. doi: 10.1021/acsphyschemau.4c00069. eCollection 2025 Jan 22.
8
Exchange, promiscuity, and orthogonality in designed coiled-coil peptide assemblies.
Chem Sci. 2024 Dec 9;16(4):1826-1836. doi: 10.1039/d4sc06329e. eCollection 2025 Jan 22.
9
10
Quantitative insights into the mechanism of proton conduction and selectivity for the human voltage-gated proton channel Hv1.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2407479121. doi: 10.1073/pnas.2407479121. Epub 2024 Sep 11.

本文引用的文献

1
Resolving the Structural Debate for the Hydrated Excess Proton in Water.
J Am Chem Soc. 2021 Nov 10;143(44):18672-18683. doi: 10.1021/jacs.1c08552. Epub 2021 Nov 1.
2
Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient.
Front Chem. 2021 Jun 15;9:660954. doi: 10.3389/fchem.2021.660954. eCollection 2021.
3
Combinatorial Approach for Exploring Conformational Space and Activation Barriers in Computer-Aided Enzyme Design.
ACS Catal. 2020 Jun 5;10(11):6002-6012. doi: 10.1021/acscatal.0c01206. Epub 2020 Apr 27.
4
Constructing ion channels from water-soluble α-helical barrels.
Nat Chem. 2021 Jul;13(7):643-650. doi: 10.1038/s41557-021-00688-0. Epub 2021 May 10.
5
Water orientation and dynamics in the closed and open influenza B virus M2 proton channels.
Commun Biol. 2021 Mar 12;4(1):338. doi: 10.1038/s42003-021-01847-2.
6
Bottom-up de novo design of functional proteins with complex structural features.
Nat Chem Biol. 2021 Apr;17(4):492-500. doi: 10.1038/s41589-020-00699-x. Epub 2021 Jan 4.
7
Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers.
Nat Struct Mol Biol. 2020 Dec;27(12):1202-1208. doi: 10.1038/s41594-020-00536-8. Epub 2020 Nov 11.
8
De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.
Science. 2020 Oct 23;370(6515):426-431. doi: 10.1126/science.abd9909. Epub 2020 Sep 9.
9
A defined structural unit enables de novo design of small-molecule-binding proteins.
Science. 2020 Sep 4;369(6508):1227-1233. doi: 10.1126/science.abb8330.
10
Computational design of transmembrane pores.
Nature. 2020 Sep;585(7823):129-134. doi: 10.1038/s41586-020-2646-5. Epub 2020 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验