Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
Soft Matter. 2022 Sep 14;18(35):6739-6756. doi: 10.1039/d2sm00908k.
Protein-protein interactions are essential for the understanding of biological processes. Specific protein aggregation is an important aspect for many biological systems. In particular, electrostatic interactions play the key role for protein-protein interactions, as many amino acids have pH-dependent charge states. Moreover, protein dissociation is directly related to the solution pH, ionic strength, temperature and protein concentration. The subtle interplay between different specific and non-specific interactions is demonstrated for beta-lactoglobulin (BLG) with a focus on low salt concentrations, thus mimicking technically relevant processing conditions. BLG is a well-characterized model system, proven to attain its monomer-dimer equilibrium strongly dependent upon the pH of the solution. In this manuscript, we present a unique combination of analytical ultracentrifugation and membrane osmometry experiments, which quantifies specific and non-specific interactions, in terms of the dimer dissociation constants and the second osmotic virial coefficient, at pH 3 and 7 and sodium chloride concentrations of 10 mM and 100 mM. This provides direct insight to protein-protein interactions for a system with a concentration-dependent monomer-dimer equilibrium. Moreover, using a coarse-grained extended DLVO model in combination with molecular dynamics simulations, we quantify non-specific monomer-monomer, monomer-dimer and dimer-dimer interactions as well as the binding free energy of BLG dimerization from theoretical calculations. The experimentally determined interactions are shown to be mainly governed by electrostatic interactions and further agree with free energy calculations. Our experimental protocol aims to determine non-specific and specific interactions for a dynamically interacting system and provides an understanding of protein-protein interactions for BLG at low salt concentrations.
蛋白质-蛋白质相互作用对于理解生物过程至关重要。特定的蛋白质聚集是许多生物系统的一个重要方面。特别是,静电相互作用在蛋白质-蛋白质相互作用中起着关键作用,因为许多氨基酸具有依赖 pH 值的电荷状态。此外,蛋白质的解离与溶液 pH 值、离子强度、温度和蛋白质浓度直接相关。β-乳球蛋白(BLG)在低盐浓度下展示了不同的特异性和非特异性相互作用之间的微妙相互作用,模拟了技术上相关的处理条件。BLG 是一个经过充分研究的模型系统,证明其单体-二聚体平衡强烈依赖于溶液的 pH 值。在本文中,我们提出了一种独特的分析超速离心和膜渗透压实验相结合的方法,该方法可以定量测量特异性和非特异性相互作用,包括二聚体解离常数和第二渗透压第二维里系数,在 pH 值为 3 和 7 以及氯化钠浓度为 10 mM 和 100 mM 时。这为具有浓度依赖性单体-二聚体平衡的系统提供了对蛋白质-蛋白质相互作用的直接了解。此外,我们使用粗粒化扩展 DLVO 模型结合分子动力学模拟,从理论计算中定量测量非特异性单体-单体、单体-二聚体和二聚体-二聚体相互作用以及 BLG 二聚化的结合自由能。实验确定的相互作用主要由静电相互作用控制,并与自由能计算一致。我们的实验方案旨在确定动态相互作用系统的非特异性和特异性相互作用,并提供对低盐浓度下 BLG 蛋白质-蛋白质相互作用的理解。