Suppr超能文献

基于适体的微流控设备中细胞的特异性捕获和温度介导释放。

Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device.

机构信息

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

出版信息

Lab Chip. 2012 Sep 21;12(18):3504-13. doi: 10.1039/c2lc40411g. Epub 2012 Aug 2.

Abstract

Isolation of cells from heterogeneous mixtures is critically important in both basic cell biology studies and clinical diagnostics. Cell isolation can be realized based on physical properties such as size, density and electrical properties. Alternatively, affinity binding of target cells by surface-immobilized ligands, such as antibodies, can be used to achieve specific cell isolation. Microfluidics technology has recently been used in conjunction with antibody-based affinity isolation methods to capture, purify and isolate cells with higher yield rates, better efficiencies and lower costs. However, a method that allows easy release and collection of live cells from affinity surfaces for subsequent analysis and detection has yet to be developed. This paper presents a microfluidic device that not only achieves specific affinity capture and enrichment, but also enables non-destructive, temperature-mediated release and retrieval of cells. Specific cell capture is achieved using surface-immobilized aptamers in a microchamber. Release of the captured cells is realized by a moderate temperature change, effected via integrated heaters and a temperature sensor, to reversibly disrupt the cell-aptamer interaction. Experimental results with CCRF-CEM cells have demonstrated that the device is capable of specific capture and temperature-mediated release of cells, that the released cells remain viable and that the aptamer-functionalized surface is regenerable.

摘要

从异质混合物中分离细胞在基础细胞生物学研究和临床诊断中都至关重要。细胞分离可以基于物理性质(如大小、密度和电特性)来实现。或者,可以使用表面固定的配体(如抗体)与靶细胞的亲和结合来实现特定的细胞分离。微流控技术最近已与基于抗体的亲和分离方法结合使用,以提高产量、效率和降低成本来捕获、纯化和分离细胞。然而,仍然需要开发一种能够轻松地从亲和表面上释放和收集活细胞以进行后续分析和检测的方法。本文提出了一种微流控设备,不仅能够实现特异性亲和捕获和富集,还能够实现非破坏性、温度介导的细胞释放和回收。使用微腔中的表面固定适体实现特定细胞的捕获。通过集成的加热器和温度传感器实现温和的温度变化来实现捕获细胞的释放,从而可逆地破坏细胞-适体相互作用。用 CCRF-CEM 细胞进行的实验结果表明,该设备能够实现细胞的特异性捕获和温度介导的释放,释放的细胞保持活力,并且适体功能化表面是可再生的。

相似文献

1
Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device.
Lab Chip. 2012 Sep 21;12(18):3504-13. doi: 10.1039/c2lc40411g. Epub 2012 Aug 2.
2
Spatially selective release of aptamer-captured cells by temperature mediation.
IET Nanobiotechnol. 2014 Mar;8(1):2-9. doi: 10.1049/iet-nbt.2013.0028.
3
Enrichment of cancer cells using aptamers immobilized on a microfluidic channel.
Anal Chem. 2009 Feb 1;81(3):1033-9. doi: 10.1021/ac802092j.
4
Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device.
Anal Chem. 2012 May 1;84(9):4199-206. doi: 10.1021/ac3005633. Epub 2012 Apr 17.
6
Controlled viable release of selectively captured label-free cells in microchannels.
Lab Chip. 2011 Dec 7;11(23):3979-89. doi: 10.1039/c1lc20487d. Epub 2011 Oct 14.
8
Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices.
ACS Nano. 2013 Aug 27;7(8):7067-76. doi: 10.1021/nn4023747. Epub 2013 Jul 15.
9
An integrated microfluidic system for measurement of glycated hemoglobin levels by using an aptamer-antibody assay on magnetic beads.
Biosens Bioelectron. 2015 Jun 15;68:397-403. doi: 10.1016/j.bios.2015.01.027. Epub 2015 Jan 13.

引用本文的文献

1
Nucleic acid aptamers in orthopedic diseases: promising therapeutic agents for bone disorders.
Bone Res. 2025 Jul 24;13(1):71. doi: 10.1038/s41413-025-00447-8.
2
Multivalent Aptamer Approach: Designs, Strategies, and Applications.
Micromachines (Basel). 2022 Mar 12;13(3):436. doi: 10.3390/mi13030436.
5
Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices.
Micromachines (Basel). 2020 Aug 14;11(8):774. doi: 10.3390/mi11080774.
6
Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases.
Int J Mol Sci. 2020 May 4;21(9):3252. doi: 10.3390/ijms21093252.
7
Circulating Tumor Cell Detection In Epithelial Ovarian Cancer Using Dual-Component Antibodies Targeting EpCAM And FRα.
Cancer Manag Res. 2019 Dec 31;11:10939-10948. doi: 10.2147/CMAR.S211455. eCollection 2019.
8
The Convergence of Cell-Based Surface Plasmon Resonance and Biomaterials: The Future of Quantifying Bio-molecular Interactions-A Review.
Ann Biomed Eng. 2020 Jul;48(7):2078-2089. doi: 10.1007/s10439-019-02429-4. Epub 2019 Dec 6.
9
Traceless aptamer-mediated isolation of CD8 T cells for chimeric antigen receptor T-cell therapy.
Nat Biomed Eng. 2019 Oct;3(10):783-795. doi: 10.1038/s41551-019-0411-6. Epub 2019 Jun 17.
10
A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM.
Nanoscale Res Lett. 2018 Apr 1;13(1):66. doi: 10.1186/s11671-017-2403-3.

本文引用的文献

1
Efficient capture of circulating tumor cells with a novel immunocytochemical microfluidic device.
Biomicrofluidics. 2011 Sep;5(3):34119-3411915. doi: 10.1063/1.3623748. Epub 2011 Aug 22.
2
Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces.
Adv Mater. 2011 Oct 11;23(38):4376-80. doi: 10.1002/adma.201102435. Epub 2011 Aug 22.
3
Demonstration and Characterization of Biomolecular Enrichment on Microfluidic Aptamer-Functionalized Surfaces.
Sens Actuators B Chem. 2011 Jul 5;155(1):58-66. doi: 10.1016/j.snb.2010.11.024.
5
Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology.
J Cell Mol Med. 2011 Jun;15(6):1266-86. doi: 10.1111/j.1582-4934.2011.01265.x.
6
Microfluidics for cell separation.
Med Biol Eng Comput. 2010 Oct;48(10):999-1014. doi: 10.1007/s11517-010-0611-4. Epub 2010 Apr 23.
7
Caffeic acid phenethyl ester triggers apoptosis through induction of loss of mitochondrial membrane potential in CCRF-CEM cells.
J Cancer Res Clin Oncol. 2011 Jan;137(1):41-7. doi: 10.1007/s00432-010-0857-0. Epub 2010 Mar 10.
8
Discovery and development of therapeutic aptamers.
Annu Rev Pharmacol Toxicol. 2010;50:237-57. doi: 10.1146/annurev.pharmtox.010909.105547.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验