Suppr超能文献

两阶段剂量探索在肿瘤 I 期临床试验中的细胞毒药物。

Two-stage dose finding for cytostatic agents in phase I oncology trials.

机构信息

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong.

出版信息

Stat Med. 2013 Feb 20;32(4):644-60. doi: 10.1002/sim.5546. Epub 2012 Aug 1.

Abstract

Conventional dose-finding methods in oncology are mainly developed for cytotoxic agents with the aim of finding the maximum tolerated dose. In phase I clinical trials with cytostatic agents, such as targeted therapies, designs with toxicity endpoints alone may not work well. For cytostatic agents, the goal is often to find the most efficacious dose that is still tolerable, although these agents are typically less toxic than cytotoxic agents and their efficacy may not monotonically increase with the dose. To effectively differentiate doses for cytostatic agents, we develop a two-stage dose-finding procedure by first identifying the toxicity upper bound of the searching range through dose escalation and then determining the most efficacious dose through dose de-escalation while toxicity is continuously monitored. In oncology, treatment efficacy often takes a relatively long period to exhibit compared with toxicity. To accommodate such delayed response, we model the time to the efficacy event by redistributing the mass of the censored observation to the right and compute the fractional contribution of the censored data. We evaluate the operating characteristics of the new dose-finding design for cytostatic agents and demonstrate its satisfactory performance through simulation studies.

摘要

肿瘤学中的传统剂量探索方法主要针对细胞毒性药物开发,旨在寻找最大耐受剂量。在具有毒性终点的细胞抑制剂(如靶向治疗)的 I 期临床试验中,单独使用毒性设计可能效果不佳。对于细胞抑制剂,其目标通常是找到仍可耐受的最有效剂量,尽管这些药物通常比细胞毒性药物毒性小,并且其疗效可能不会随剂量单调增加。为了有效地为细胞抑制剂区分剂量,我们通过首先在剂量递增过程中确定搜索范围的毒性上限,然后在毒性持续监测的同时通过剂量递减确定最有效的剂量,从而开发了两阶段剂量探索程序。在肿瘤学中,与毒性相比,治疗效果往往需要较长的时间才能显现。为了适应这种延迟反应,我们通过将删失观测值的质量重新分配到右侧来对疗效事件的时间进行建模,并计算删失数据的分数贡献。我们评估了新的细胞抑制剂剂量探索设计的操作特性,并通过模拟研究证明了其令人满意的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验