Guo Beibei, Li Yisheng
Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, 70803, U.S.A.
Stat Med. 2015 Feb 28;34(5):859-75. doi: 10.1002/sim.6376. Epub 2014 Nov 21.
Molecularly targeted agent (MTA) combination therapy is in the early stages of development. When using a fixed dose of one agent in combinations of MTAs, toxicity and efficacy do not necessarily increase with an increasing dose of the other agent. Thus, in dose-finding trials for combinations of MTAs, interest may lie in identifying the optimal biological dose combinations (OBDCs), defined as the lowest dose combinations (in a certain sense) that are safe and have the highest efficacy level meeting a prespecified target. The limited existing designs for these trials use parametric dose-efficacy and dose-toxicity models. Motivated by a phase I/II clinical trial of a combination of two MTAs in patients with pancreatic, endometrial, or colorectal cancer, we propose Bayesian dose-finding designs to identify the OBDCs without parametric model assumptions. The proposed approach is based only on partial stochastic ordering assumptions for the effects of the combined MTAs and uses isotonic regression to estimate partially stochastically ordered marginal posterior distributions of the efficacy and toxicity probabilities. We demonstrate that our proposed method appropriately accounts for the partial ordering constraints, including potential plateaus on the dose-response surfaces, and is computationally efficient. We develop a dose-combination-finding algorithm to identify the OBDCs. We use simulations to compare the proposed designs with an alternative design based on Bayesian isotonic regression transformation and a design based on parametric change-point dose-toxicity and dose-efficacy models and demonstrate desirable operating characteristics of the proposed designs.
分子靶向药物(MTA)联合治疗尚处于研发初期。在使用固定剂量的一种药物与其他MTA联合使用时,毒性和疗效不一定会随着另一种药物剂量的增加而增加。因此,在MTA联合治疗的剂量探索试验中,关注点可能在于确定最佳生物学剂量组合(OBDC),即(在某种意义上)安全且具有满足预先设定目标的最高疗效水平的最低剂量组合。针对这些试验,现有的设计有限,采用的是参数剂量-疗效和剂量-毒性模型。受一项针对胰腺癌、子宫内膜癌或结直肠癌患者的两种MTA联合治疗的I/II期临床试验启发,我们提出了贝叶斯剂量探索设计,以在无参数模型假设的情况下确定OBDC。所提出的方法仅基于联合MTA效应的部分随机排序假设,并使用等渗回归来估计疗效和毒性概率的部分随机排序边际后验分布。我们证明,我们提出的方法适当地考虑了部分排序约束,包括剂量反应表面上的潜在平台期,并且计算效率高。我们开发了一种剂量组合寻找算法来确定OBDC。我们通过模拟将所提出的设计与基于贝叶斯等渗回归变换的替代设计以及基于参数变点剂量-毒性和剂量-疗效模型的设计进行比较,并证明了所提出设计的理想操作特性。