Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
Diabetes Technol Ther. 2012 Oct;14(10):883-90. doi: 10.1089/dia.2012.0111. Epub 2012 Aug 2.
Neonatal hypoglycemia is common and may cause serious brain injury. Diagnosis is by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing the number of BG measurements. Calibration algorithms convert sensor signals into CGM output. Thus, these algorithms directly affect measures used to quantify hypoglycemia. This study was designed to quantify the effects of recalibration and filtering of CGM data on measures of hypoglycemia (BG <2.6 mmol/L) in neonates.
CGM data from 50 infants were recalibrated using an algorithm that explicitly recognized the high-accuracy BG measurements available in this study. CGM data were analyzed as (1) original CGM output, (2) recalibrated CGM output, (3) recalibrated CGM output with postcalibration median filtering, and (4) recalibrated CGM output with precalibration median filtering. Hypoglycemia was classified by number of episodes, duration, severity, and hypoglycemic index.
Recalibration increased the number of hypoglycemic events (from 161 to 193), hypoglycemia duration (from 2.2% to 2.6%), and hypoglycemic index (from 4.9 to 7.1 μmol/L). Median filtering postrecalibration reduced hypoglycemic events from 193 to 131, with little change in duration (from 2.6% to 2.5%) and hypoglycemic index (from 7.1 to 6.9 μmol/L). Median filtering prerecalibration resulted in 146 hypoglycemic events, a total duration of hypoglycemia of 2.6%, and a hypoglycemic index of 6.8 μmol/L.
Hypoglycemia metrics, especially counting events, are heavily dependent on CGM calibration BG error, and the calibration algorithm. CGM devices tended to read high at lower levels, so when high accuracy calibration measurements are available it may be more appropriate to recalibrate the data.
新生儿低血糖症较为常见,可能导致严重的脑损伤。其诊断依据为血糖(BG)测量值,通常每隔数小时测量一次。连续血糖监测(CGM)可以提高低血糖检测的灵敏度,同时减少 BG 测量次数。校准算法将传感器信号转换为 CGM 输出。因此,这些算法直接影响用于量化低血糖的指标。本研究旨在定量评估重新校准和 CGM 数据滤波对新生儿低血糖(BG<2.6mmol/L)指标的影响。
对 50 名婴儿的 CGM 数据使用一种算法进行重新校准,该算法明确识别了本研究中具有高精度的 BG 测量值。将 CGM 数据分别作为(1)原始 CGM 输出、(2)重新校准的 CGM 输出、(3)重新校准的 CGM 输出加后校准中位数滤波和(4)重新校准的 CGM 输出加前校准中位数滤波进行分析。低血糖的分类依据为发作次数、持续时间、严重程度和低血糖指数。
重新校准增加了低血糖事件的数量(从 161 次增加到 193 次)、低血糖持续时间(从 2.2%增加到 2.6%)和低血糖指数(从 4.9 增加到 7.1μmol/L)。重新校准后的中位数滤波减少了低血糖事件,从 193 次减少到 131 次,持续时间(从 2.6%减少到 2.5%)和低血糖指数(从 7.1μmol/L减少到 6.9μmol/L)几乎没有变化。重新校准前中位数滤波导致 146 次低血糖事件,总低血糖持续时间为 2.6%,低血糖指数为 6.8μmol/L。
低血糖指标,尤其是事件计数,严重依赖于 CGM 校准 BG 误差和校准算法。CGM 设备在较低水平时往往读数偏高,因此当有高精度校准测量值时,重新校准数据可能更为合适。