Suppr超能文献

一种新型实时连续血糖监测算法的准确性

Accuracy of a new real-time continuous glucose monitoring algorithm.

作者信息

Keenan D Barry, Cartaya Raymond, Mastrototaro John J

机构信息

Medtronic MiniMed, Northridge, California 91325, USA.

出版信息

J Diabetes Sci Technol. 2010 Jan 1;4(1):111-8. doi: 10.1177/193229681000400114.

Abstract

BACKGROUND

Through minimally invasive sensor-based continuous glucose monitoring (CGM), individuals can manage their blood glucose (BG) levels more aggressively, thereby improving their hemoglobin A1c level, while reducing the risk of hypoglycemia. Tighter glycemic control through CGM, however, requires an accurate glucose sensor and calibration algorithm with increased performance at lower BG levels.

METHODS

Sensor and BG measurements for 72 adult and adolescent subjects were obtained during the course of a 26-week multicenter study evaluating the efficacy of the Paradigm REAL-Time (PRT) sensor-augmented pump system (Medtronic Diabetes, Northridge, CA) in an outpatient setting. Subjects in the study arm performed at least four daily finger stick measurements. A retrospective analysis of the data set was performed to evaluate a new calibration algorithm utilized in the Paradigm Veo insulin pump (Medtronic Diabetes) and to compare these results to performance metrics calculated for the PRT.

RESULTS

A total of N = 7193 PRT sensor downloads for 3 days of use, as well as 90,472 temporally and nonuniformly paired data points (sensor and meter values), were evaluated, with 5841 hypoglycemic and 15,851 hyperglycemic events detected through finger stick measurements. The Veo calibration algorithm decreased the overall mean absolute relative difference by greater than 0.25 to 15.89%, with hypoglycemia sensitivity increased from 54.9% in the PRT to 82.3% in the Veo (90.5% with predictive alerts); however, hyperglycemia sensitivity was decreased only marginally from 86% in the PRT to 81.7% in the Veo.

CONCLUSIONS

The Veo calibration algorithm, with sensor error reduced significantly in the 40- to 120-mg/dl range, improves hypoglycemia detection, while retaining accuracy at high glucose levels.

摘要

背景

通过基于微创传感器的连续血糖监测(CGM),个体能够更积极地管理其血糖(BG)水平,从而改善糖化血红蛋白水平,同时降低低血糖风险。然而,通过CGM实现更严格的血糖控制需要一个在较低BG水平下性能更高的精确葡萄糖传感器和校准算法。

方法

在一项为期26周的多中心研究过程中,获取了72名成人和青少年受试者的传感器和BG测量值,该研究在门诊环境中评估了美敦力糖尿病公司(位于加利福尼亚州北岭)的实时范式(PRT)传感器增强泵系统的疗效。研究组中的受试者每天至少进行四次指尖血糖测量。对数据集进行回顾性分析,以评估美敦力糖尿病公司的范式Veo胰岛素泵中使用的一种新校准算法,并将这些结果与为PRT计算的性能指标进行比较。

结果

对7193次PRT传感器使用3天的下载数据以及90472个时间上和分布不均匀的配对数据点(传感器和血糖仪值)进行了评估,通过指尖血糖测量检测到5841次低血糖事件和15851次高血糖事件。Veo校准算法将总体平均绝对相对差异降低了超过0.25,降至15.89%,低血糖敏感性从PRT中的54.9%提高到Veo中的82.3%(有预测警报时为90.5%);然而,高血糖敏感性仅从PRT中的86%略微降至Veo中的81.7%。

结论

Veo校准算法在40至120mg/dl范围内显著降低了传感器误差,改善了低血糖检测,同时在高血糖水平时保持了准确性。

相似文献

引用本文的文献

8
Continuous Glucose Monitoring Systems: A Review.连续血糖监测系统:综述。
Diagnostics (Basel). 2013 Oct 29;3(4):385-412. doi: 10.3390/diagnostics3040385.

本文引用的文献

3
Continuous glucose monitoring and intensive treatment of type 1 diabetes.1型糖尿病的持续血糖监测与强化治疗
N Engl J Med. 2008 Oct 2;359(14):1464-76. doi: 10.1056/NEJMoa0805017. Epub 2008 Sep 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验