Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
Langmuir. 2012 Aug 28;28(34):12581-7. doi: 10.1021/la302473j. Epub 2012 Aug 16.
Virus-poly(3,4-ethylenedioxythiophene) (virus-PEDOT) biocomposite films are prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous electrolytes containing 12 mM LiClO(4) and the bacteriophage M13. The concentration of virus in these solutions, virus, is varied from 3 to 15 nM. A quartz crystal microbalance is used to directly measure the total mass of the biocomposite film during its electrodeposition. In combination with a measurement of the electrodeposition charge, the mass of the virus incorporated into the film is calculated. These data show that the concentration of the M13 within the electropolymerized film, virus, increases linearly with virus. The incorporation of virus particles into the PEDOT film from solution is efficient, resulting in a concentration ratio of virus:virus ≈ 450. Virus incorporation into the PEDOT causes roughening of the film topography that is observed using scanning electron microscopy and atomic force microscopy (AFM). The electrical conductivity of the virus-PEDOT film, measured perpendicular to the plane of the film using conductive tip AFM, decreases linearly with virus loading, from 270 μS/cm for pure PEDOT films to 50 μS/cm for films containing 100 μM virus. The presence on the virus surface of displayed affinity peptides did not significantly influence the efficiency of incorporation into virus-PEDOT biocomposite films.
病毒-聚(3,4-亚乙基二氧噻吩)(病毒-PEDOT)生物复合膜是通过在含有 12mM LiClO4 和噬菌体 M13 的水性电解质中电聚合 3,4-亚乙基二氧噻吩(EDOT)制备的。这些溶液中病毒的浓度,[病毒](soln),从 3 到 15 nM 变化。使用石英晶体微天平直接测量电沉积过程中生物复合膜的总质量。结合电沉积电荷量的测量,可以计算出掺入膜中的病毒质量。这些数据表明,电聚合膜中 M13 的浓度[病毒](film)与[病毒](soln)线性增加。病毒颗粒从溶液中掺入到 PEDOT 膜中是有效的,导致[病毒](film):[病毒](soln)的浓度比约为 450。病毒掺入到 PEDOT 中导致膜形貌粗糙,这可以通过扫描电子显微镜和原子力显微镜(AFM)观察到。使用导电针尖 AFM 垂直于膜平面测量病毒-PEDOT 膜的电导率,随着病毒负载的线性下降,从纯 PEDOT 膜的 270 μS/cm 下降到含有 100 μM 病毒的膜的 50 μS/cm。病毒表面上显示的亲和肽的存在并没有显著影响掺入病毒-PEDOT 生物复合膜的效率。