Brain Research Unit, OV Lounasmaa Laboratory, School of Science, Aalto University, Espoo, Finland.
PLoS One. 2012;7(7):e42000. doi: 10.1371/journal.pone.0042000. Epub 2012 Jul 30.
Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film ("At land" by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative.
独立成分分析(ICA)可以从功能磁共振成像(fMRI)数据中解耦功能脑网络。估计的组件数量既影响识别网络的空间模式,也影响它们的时间进程估计。在这里,对来自 15 名观看 15 分钟无声电影(Maya Deren 的“在陆地上”)的受试者的 fMRI 数据进行了组 ICA 分析,在四个维度(10、20、40 和 58 个组件)上进行了分析。我们专注于背侧注意网络、默认模式网络和感觉运动网络。最低维度在背侧注意网络中表现出最明显的活动,与视觉区域相结合,并在默认模式网络中表现出最明显的活动;感觉运动网络仅在包含至少 20 个组件的 ICA 中出现。结果表明,即使是非常低维的 ICA 也可以解耦最显著的功能连接脑网络。然而,增加组件的数量可以提供更详细的图像和功能上可行的主要网络细分。这些结果提高了我们对电影观看过程中大脑网络层次细分的理解,电影提供了嵌入在注意力引导叙事中的连续刺激。