Department of Diagnostic Radiology, Oulu University Hospital, Finland.
Hum Brain Mapp. 2010 Aug;31(8):1207-16. doi: 10.1002/hbm.20929.
Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability software and after clustering of components, centrotype components were used for further analysis. Visual signal sources (VSS), default mode network (DMN), primary somatosensory (S(1)), secondary somatosensory (S(2)), primary motor cortex (M(1)), striatum, and precuneus (preC) components were chosen as components of interest to be evaluated by varying group probabilistic independent component analysis (PICA) model order between 10 and 200. At model order 10, DMN and VSS components fuse several functionally separate sources that at higher model orders branch into multiple components. Both volume and mean z-score of components of interest showed significant (P < 0.05) changes as a function of model order. In conclusion, model order has a significant effect on ICs characteristics. Our findings suggest that using model orders < or =20 provides a general picture of large scale brain networks. However, detection of some components (i.e., S(1), S(2), and striatum) requires higher model order estimation. Model orders 30-40 showed spatial overlapping of some IC sources. Model orders 70 +/- 10 offer a more detailed evaluation of RSNs in a group PICA setting. Model orders > 100 showed a decrease in ICA repeatability, but added no significance to either volume or mean z-score results.
独立成分分析(ICA)的功能磁共振成像数据是敏感的模型阶选择。缺乏知识对增加模型阶对独立成分的影响(ICs)的特点静息态网络(RSNs)。概率组独立成分分析(组 PICA)的 55 例健康对照组静息状态数据重复 100 次使用 ICASSO 可重复性软件和组件的聚类后,centrotype 组件用于进一步分析。视觉信号源(VSS),默认模式网络(DMN),初级躯体感觉(S(1)),二级躯体感觉(S(2)),初级运动皮层(M(1)),纹状体和楔前叶(preC)组件选择作为感兴趣的组件进行评估,通过改变组概率独立成分分析(PICA)模型阶 10 到 200。在模型阶 10 时,DMN 和 VSS 组件融合了几个功能上分离的源,在更高的模型阶上分枝成多个组件。感兴趣的组件的体积和平均 z 分数都表现出显著的(P <0.05)随模型阶的变化。总之,模型阶对 ICs 的特性有显著的影响。我们的研究结果表明,使用模型阶<或=20 提供了一个大尺度脑网络的总体图景。然而,检测一些组件(即 S(1),S(2)和纹状体)需要更高的模型阶估计。模型阶 30-40 显示了一些 IC 源的空间重叠。模型阶 70 +/- 10 提供了在组 PICA 环境下对 RSNs 的更详细评估。模型阶> 100 显示 ICA 可重复性降低,但对体积或平均 z 分数结果没有显著性影响。