Suppr超能文献

分组 PICA 中模型阶数选择的影响。

The effect of model order selection in group PICA.

机构信息

Department of Diagnostic Radiology, Oulu University Hospital, Finland.

出版信息

Hum Brain Mapp. 2010 Aug;31(8):1207-16. doi: 10.1002/hbm.20929.

Abstract

Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability software and after clustering of components, centrotype components were used for further analysis. Visual signal sources (VSS), default mode network (DMN), primary somatosensory (S(1)), secondary somatosensory (S(2)), primary motor cortex (M(1)), striatum, and precuneus (preC) components were chosen as components of interest to be evaluated by varying group probabilistic independent component analysis (PICA) model order between 10 and 200. At model order 10, DMN and VSS components fuse several functionally separate sources that at higher model orders branch into multiple components. Both volume and mean z-score of components of interest showed significant (P < 0.05) changes as a function of model order. In conclusion, model order has a significant effect on ICs characteristics. Our findings suggest that using model orders < or =20 provides a general picture of large scale brain networks. However, detection of some components (i.e., S(1), S(2), and striatum) requires higher model order estimation. Model orders 30-40 showed spatial overlapping of some IC sources. Model orders 70 +/- 10 offer a more detailed evaluation of RSNs in a group PICA setting. Model orders > 100 showed a decrease in ICA repeatability, but added no significance to either volume or mean z-score results.

摘要

独立成分分析(ICA)的功能磁共振成像数据是敏感的模型阶选择。缺乏知识对增加模型阶对独立成分的影响(ICs)的特点静息态网络(RSNs)。概率组独立成分分析(组 PICA)的 55 例健康对照组静息状态数据重复 100 次使用 ICASSO 可重复性软件和组件的聚类后,centrotype 组件用于进一步分析。视觉信号源(VSS),默认模式网络(DMN),初级躯体感觉(S(1)),二级躯体感觉(S(2)),初级运动皮层(M(1)),纹状体和楔前叶(preC)组件选择作为感兴趣的组件进行评估,通过改变组概率独立成分分析(PICA)模型阶 10 到 200。在模型阶 10 时,DMN 和 VSS 组件融合了几个功能上分离的源,在更高的模型阶上分枝成多个组件。感兴趣的组件的体积和平均 z 分数都表现出显著的(P <0.05)随模型阶的变化。总之,模型阶对 ICs 的特性有显著的影响。我们的研究结果表明,使用模型阶<或=20 提供了一个大尺度脑网络的总体图景。然而,检测一些组件(即 S(1),S(2)和纹状体)需要更高的模型阶估计。模型阶 30-40 显示了一些 IC 源的空间重叠。模型阶 70 +/- 10 提供了在组 PICA 环境下对 RSNs 的更详细评估。模型阶> 100 显示 ICA 可重复性降低,但对体积或平均 z 分数结果没有显著性影响。

相似文献

1
The effect of model order selection in group PICA.
Hum Brain Mapp. 2010 Aug;31(8):1207-16. doi: 10.1002/hbm.20929.
3
Functional segmentation of the brain cortex using high model order group PICA.
Hum Brain Mapp. 2009 Dec;30(12):3865-86. doi: 10.1002/hbm.20813.
4
Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia.
J Neurosci Methods. 2018 Jul 1;304:24-38. doi: 10.1016/j.jneumeth.2018.02.013. Epub 2018 Apr 16.
5
Group ICA of resting-state data: a comparison.
MAGMA. 2010 Dec;23(5-6):317-25. doi: 10.1007/s10334-010-0212-0. Epub 2010 Jun 3.
6
Correction of low-frequency physiological noise from the resting state BOLD fMRI--Effect on ICA default mode analysis at 1.5 T.
J Neurosci Methods. 2010 Feb 15;186(2):179-85. doi: 10.1016/j.jneumeth.2009.11.015. Epub 2009 Nov 24.
7
Generation of the probabilistic template of default mode network derived from resting-state fMRI.
IEEE Trans Biomed Eng. 2014 Oct;61(10):2550-5. doi: 10.1109/TBME.2014.2323078. Epub 2014 May 16.
8
SMART (Splitting-Merging Assisted Reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks.
Neurosci Bull. 2024 Jul;40(7):905-920. doi: 10.1007/s12264-024-01184-4. Epub 2024 Mar 15.
9
Estimating the number of independent components for functional magnetic resonance imaging data.
Hum Brain Mapp. 2007 Nov;28(11):1251-66. doi: 10.1002/hbm.20359.
10
Independent component model of the default-mode brain function: Assessing the impact of active thinking.
Brain Res Bull. 2006 Oct 16;70(4-6):263-9. doi: 10.1016/j.brainresbull.2006.06.012. Epub 2006 Jul 21.

引用本文的文献

2
4
Toward Granular Brain Intrinsic Connectivity Networks and Insights into Schizophrenia.
bioRxiv. 2025 Jun 11:2025.06.11.659084. doi: 10.1101/2025.06.11.659084.
6
A telescopic independent component analysis on functional magnetic resonance imaging dataset.
Netw Neurosci. 2025 Mar 3;9(1):61-76. doi: 10.1162/netn_a_00421. eCollection 2025.
7
Spatial (mis)match between EEG and fMRI signal patterns revealed by spatio-spectral source-space EEG decomposition.
Front Neurosci. 2025 Mar 14;19:1549172. doi: 10.3389/fnins.2025.1549172. eCollection 2025.
8
Deciphering Multiway Multiscale Brain Network Connectivity: Insights from Birth to 6 Months.
bioRxiv. 2025 Jan 27:2025.01.24.634772. doi: 10.1101/2025.01.24.634772.
10
A Telescopic Independent Component Analysis on Functional Magnetic Resonance Imaging Data Set.
bioRxiv. 2024 Sep 27:2024.02.19.581086. doi: 10.1101/2024.02.19.581086.

本文引用的文献

3
Correspondence of the brain's functional architecture during activation and rest.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
4
Functional segmentation of the brain cortex using high model order group PICA.
Hum Brain Mapp. 2009 Dec;30(12):3865-86. doi: 10.1002/hbm.20813.
7
Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
Neuroimage. 2008 Nov 15;43(3):528-39. doi: 10.1016/j.neuroimage.2008.08.010. Epub 2008 Aug 22.
9
Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans Neural Netw. 1999;10(3):626-34. doi: 10.1109/72.761722.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验