Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Appl Microbiol Biotechnol. 2012 Oct;96(1):283-97. doi: 10.1007/s00253-012-4320-9. Epub 2012 Aug 4.
Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.
野生型 Ralstonia eutropha H16 在有过量碳存在的营养胁迫下会将聚羟基丁酸酯 (PHB) 作为细胞内碳储存物质。在这项研究中,过量的碳从 PHB 储存中重新定向到异丁醇和 3-甲基-1-丁醇(支链高级醇)的生产中。这些支链高级醇可以直接替代化石燃料,并在当前的基础设施内使用。具有异丁醛脱氢酶活性的各种突变株 R. eutropha 与过表达质粒携带的、天然的支链氨基酸生物合成途径基因和过表达异戊酸酮脱羧酶基因相结合,用于异丁醇和 3-甲基-1-丁醇的生物合成。这些支链醇的生产是在工程化的 R. eutropha 中氮或磷限制时开始的。一种突变株不仅在摇瓶培养中产生了超过 180mg/L 的支链醇,而且对异丁醇毒性的耐受性明显高于野生型 R. eutropha。在消除编码三个潜在碳汇(ilvE、bkdAB 和 aceE)的基因后,生产滴度提高到 270mg/L 异丁醇和 40mg/L 3-甲基-1-丁醇。利用半连续摇瓶培养来最小化异丁醇引起的毒性,同时为细胞提供足够的营养。在这种半连续摇瓶培养下,R. eutropha 突变株在 50 天的时间内生长并产生了超过 14g/L 的支链醇。这些结果表明,R. eutropha 的碳通量可以从 PHB 重新定向到支链醇,并且可以长时间培养工程化的 R. eutropha 用于产物生物合成。