Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tübingen, Tübingen, Germany.
J Comput Aided Mol Des. 2012 Aug;26(8):935-45. doi: 10.1007/s10822-012-9592-8. Epub 2012 Aug 4.
Halogen bonds are specific embodiments of the sigma hole bonding paradigm. They represent directional interactions between the halogens chlorine, bromine, or iodine and an electron donor as binding partner. Using quantum chemical calculations at the MP2 level, we systematically explore how they can be used in molecular design to address the omnipresent carbonyls of the protein backbone. We characterize energetics and directionality and elucidate their spatial variability in sub-optimal geometries that are expected to occur in protein-ligand complexes featuring a multitude of concomitant interactions. By deriving simple rules, we aid medicinal chemists and chemical biologists in easily exploiting them for scaffold decoration and design. Our work shows that carbonyl-halogen bonds may be used to expand the patentable medicinal chemistry space, redefining halogens as key features. Furthermore, this data will be useful for implementing halogen bonds into pharmacophore models or scoring functions making the QM information available for automatic molecular recognition in virtual high throughput screening.
卤素键是 sigma 孔键合范式的具体体现。它们代表了卤素氯、溴或碘与电子供体作为结合伙伴之间的定向相互作用。使用 MP2 水平的量子化学计算,我们系统地探索了如何在分子设计中使用它们来解决蛋白质骨架中普遍存在的羰基问题。我们描述了它们的能量学和方向性,并阐明了它们在预期出现在具有多种伴随相互作用的蛋白质-配体复合物中的亚最佳几何形状中的空间可变性。通过得出简单的规则,我们帮助药物化学家和化学生物学家轻松利用它们来进行支架修饰和设计。我们的工作表明,羰基-卤素键可用于扩展可专利的药物化学空间,将卤素重新定义为关键特征。此外,这些数据将有助于将卤素键纳入药效团模型或评分函数中,从而使 QM 信息可用于虚拟高通量筛选中的自动分子识别。