Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.
Chem Soc Rev. 2012 Oct 7;41(19):6663-83. doi: 10.1039/c2cs35095e. Epub 2012 Aug 6.
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.
污染物和其前体的排放决定了区域空气质量,并可能改变气候。气候变化会干扰影响空气污染的长距离传输、化学过程和当地气象条件。我们回顾了预计的甲烷 (CH(4))、臭氧前体 (O(3)) 和气溶胶变化对气候的影响(用辐射强迫指标或全球地表温度变化来表示)以及半球到大陆尺度的空气质量。减少臭氧前体 CH(4) 会通过减少 CH(4) 和对流层 O(3) 来减缓近期变暖。人为氮氧化物 (NO(x)) 排放的净气候强迫仍存在不确定性,因为它增加了对流层 O(3)(变暖),但也增加了气溶胶并减少了 CH(4)(两者均冷却)。一氧化碳 (CO) 和非 CH(4) 挥发性有机化合物 (NMVOC) 的人为排放通过增加 O(3) 和 CH(4) 而变暖。二次有机气溶胶 (SOA) 的辐射影响理解得还不够。通过减少大气和冰雪对太阳光的吸收,控制黑碳排放有可能减缓近期变暖,但对反射性(冷却)气溶胶的并发排放和云间接效应的不确定性限制了对净气候影响的可靠估计。减少硫酸盐和硝酸盐气溶胶将改善空气质量并减少对水文循环的干扰,但会导致变暖。因此,需要从整体和平衡的角度来评估空气污染控制如何影响气候;实现这一目标的第一步是估计各个排放部门的净气候影响。建模和观测分析表明,在许多人口密集地区,包括在污染事件期间,气候变暖会降低空气质量(增加地表 O(3) 和颗粒物)。先前的政府间气候变化专门委员会(IPCC)情景(SRES)允许无限制的增长,而代表性浓度途径(RCP)情景则假设污染物排放的减排幅度一致很大。因此,目前一代具有 RCP 排放的化学-气候模型的新估计预测,与使用 IPCC SRES 情景相比,在下个世纪空气质量将得到改善。这两组预测可能涵盖了未来的可能性。我们发现,空气质量受排放驱动的变化的不确定性通常大于气候驱动的变化的不确定性。对空气质量预测的信心受到人为排放轨迹的可靠性以及区域气候响应、与陆地生物圈的反馈以及影响 O(3) 和 SOA 的氧化途径的不确定性的限制。