Fiore Arlene M, Naik Vaishali, Leibensperger Eric M
a Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University , Palisades , NY , USA.
J Air Waste Manag Assoc. 2015 Jun;65(6):645-85. doi: 10.1080/10962247.2015.1040526.
Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs reduce SO2 to meet health and other air quality goals, near-term warming accelerates due to "unmasking" of warming induced by rising CO2. Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM. Lowering peak warming requires decreasing atmospheric CO2, which for some source categories would also reduce co-emitted air pollutants or their precursors. Model projections for alternative climate and air quality scenarios indicate a wide range for U.S. surface O3 and fine PM, although regional projections may be confounded by interannual to decadal natural climate variability. Continued implementation of U.S. NOx emission controls guards against rising pollution levels triggered either by climate change or by global emission growth. Improved accuracy and trends in emission inventories are critical for accountability analyses of historical and projected air pollution and climate mitigation policies.
The expansion of U.S. air pollution policy to protect climate provides an opportunity for joint mitigation, with CH4 a prime target. BC reductions in developing nations would lower the global health burden, and for BC-rich sources (e.g., diesel) may lessen warming. Controls on these emissions could offset near-term warming induced by health-motivated reductions of sulfate (cooling). Wildfires, dust, and other natural PM and O3 sources may increase with climate warming, posing challenges to implementing and attaining air quality standards. Accountability analyses for recent and projected air pollution and climate control strategies should underpin estimated benefits and trade-offs of future policies.
空气质量与气候变化存在多种联系。许多空气污染物源也会排放二氧化碳(CO₂),这是主要的人为温室气体(GHG)。导致美国未能达到环境空气质量标准的两个主要因素,即臭氧(O₃)和颗粒物(PM),与辐射相互作用,进而推动气候变化。PM 通过吸收阳光(如黑碳)使气候变暖,或通过散射阳光(如硫酸盐)使气候变冷,并与云层相互作用;这些辐射和微物理相互作用会引发降水和区域环流模式的变化。预计气候变化会通过改变空气污染气象条件(通风和稀释)、降水及其他清除过程,以及引发大气化学和人为及自然源中的一些放大反应,导致许多污染地区的空气质量下降。这些过程共同塑造了 O₃ 和 PM 的分布及极端事件。全球模型表明,随着空气污染控制计划减少二氧化硫排放以实现健康和其他空气质量目标,由于二氧化碳增加导致的变暖“暴露”,近期变暖速度会加快。对甲烷(一种强效温室气体和全球 O₃ 水平的前体)以及黑碳(BC)与有机碳(OC)比例高的源进行空气污染物控制,可抵消因减少二氧化硫排放导致的近期变暖,同时降低全球背景 O₃ 和区域内高水平的 PM。降低峰值变暖需要减少大气中的 CO₂,对于某些源类别而言,这也会减少共同排放的空气污染物或其前体。替代气候和空气质量情景的模型预测表明,美国地表 O₃ 和细颗粒物的范围很广,尽管区域预测可能会受到年际到年代际自然气候变率的干扰。持续实施美国的氮氧化物排放控制措施可防止因气候变化或全球排放增长引发的污染水平上升。提高排放清单的准确性和趋势对于历史和预计空气污染及气候缓解政策的问责分析至关重要。
美国扩大空气污染政策以保护气候为联合减排提供了契机,甲烷是主要目标。发展中国家减少黑碳排放将降低全球健康负担,对于富含黑碳的源(如柴油),可能会减轻变暖。对这些排放的控制可抵消因出于健康动机减少硫酸盐(降温)导致的近期变暖。野火、沙尘及其他自然 PM 和 O₃ 源可能会随着气候变暖而增加,这对实施和达到空气质量标准构成挑战。对近期和预计的空气污染及气候控制策略进行问责分析应作为未来政策估计效益和权衡的基础。