Suppr超能文献

去留之间:印迹基因的 DNA 甲基化保护与维持。

Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes.

机构信息

Mammalian Development Group, Institute of Medical Biology, Singapore.

出版信息

Epigenetics. 2012 Sep;7(9):969-75. doi: 10.4161/epi.21337. Epub 2012 Aug 7.

Abstract

Recent findings shed light on the coordination of two fundamental, yet mechanistically opposing, processes in the early mammalian embryo. During the oocyte-to-embryo transition and early preimplantation development nuclear reprogramming occurs. This resetting of the epigenome in maternal and paternal pronuclei to a ground state is the essential step ensuring totipotency in the zygote, the first embryonic stage. Radical, global DNA demethylation, which occurs actively in the paternal and passively in the maternal genome, is a prominent feature of nuclear reprogramming; yet, this process poses a danger to a subset of methylated sequences that must be preserved for their germline to soma inheritance. Genomic imprinting and its importance were demonstrated three decades ago by a series of experiments generating non-viable mammalian uniparental embryos. Indeed, imprinted loci, gene clusters with parent-of-origin specific gene expression patterns, must retain their differential methylation status acquired during gametogenesis throughout embryogenesis and in adult tissues. It is just recently that the molecular players that protect/maintain imprinting marks during reprogramming in preimplantation embryos have been identified, in particular, an epigenetic modifier complex formed by ZFP57 and TRIM28/KAP1. The interaction of these and other molecules with the newly formed embryonic chromatin and imprinted genes is discussed and highlighted herein.

摘要

最近的发现揭示了早期哺乳动物胚胎中两个基本但机制上相反的过程的协调。在卵母细胞到胚胎的转变和早期植入前发育过程中,核重编程发生。母源和父源原核中表观基因组重置为基础状态是确保合子全能性的必要步骤,合子是第一个胚胎阶段。激进的、全局的 DNA 去甲基化在父本和母本基因组中主动发生,是核重编程的一个显著特征;然而,这个过程对一些必须保留甲基化序列构成了危险,这些序列必须从生殖系到体遗传。基因组印记及其重要性在三十年前通过一系列产生非存活哺乳动物单亲胚胎的实验得到了证明。事实上,印记基因座,即具有亲本来源特异性基因表达模式的基因簇,必须在胚胎发生和成年组织中保留在配子发生过程中获得的差异甲基化状态。直到最近,才确定了在植入前胚胎重编程过程中保护/维持印记标记的分子参与者,特别是由 ZFP57 和 TRIM28/KAP1 形成的表观遗传修饰复合物。本文讨论并强调了这些和其他分子与新形成的胚胎染色质和印记基因的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f1/3515016/3119c78b5e88/epi-7-969-g1.jpg

相似文献

1
Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes.
Epigenetics. 2012 Sep;7(9):969-75. doi: 10.4161/epi.21337. Epub 2012 Aug 7.
2
Germline-derived DNA methylation and early embryo epigenetic reprogramming: The selected survival of imprints.
Int J Biochem Cell Biol. 2015 Oct;67:128-38. doi: 10.1016/j.biocel.2015.04.014. Epub 2015 May 9.
3
Loss of maternal Trim28 causes male-predominant early embryonic lethality.
Genes Dev. 2017 Jan 1;31(1):12-17. doi: 10.1101/gad.291195.116. Epub 2017 Jan 23.
5
Epigenetic reprogramming in mammalian development.
Science. 2001 Aug 10;293(5532):1089-93. doi: 10.1126/science.1063443.
7
[Epigenetics, genomic imprinting and developmental disorders].
Bull Acad Natl Med. 2010 Feb;194(2):287-97; discussion 297-300.

引用本文的文献

2
Dynamic methylation pattern of H19DMR and KvDMR1 in bovine oocytes and preimplantation embryos.
J Assist Reprod Genet. 2024 Feb;41(2):333-345. doi: 10.1007/s10815-023-03011-7. Epub 2024 Jan 17.
3
An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity.
Annu Rev Ecol Evol Syst. 2019;50:97-118. doi: 10.1146/annurev-ecolsys-110218-024613. Epub 2019 Jul 23.
5
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells.
Cells. 2021 Aug 10;10(8):2049. doi: 10.3390/cells10082049.
7
Epigenetic remodeling in preimplantation embryos: cows are not big mice.
Anim Reprod. 2018 Sep 6;15(3):204-214. doi: 10.21451/1984-3143-AR2018-0068.
10
Epigenetic regulation in development: is the mouse a good model for the human?
Hum Reprod Update. 2018 Sep 1;24(5):556-576. doi: 10.1093/humupd/dmy021.

本文引用的文献

1
PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos.
Nature. 2012 Jun 3;486(7403):415-9. doi: 10.1038/nature11093.
2
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome.
Cell. 2012 Jun 8;149(6):1368-80. doi: 10.1016/j.cell.2012.04.027. Epub 2012 May 17.
3
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution.
Science. 2012 May 18;336(6083):934-7. doi: 10.1126/science.1220671. Epub 2012 Apr 26.
4
A unique regulatory phase of DNA methylation in the early mammalian embryo.
Nature. 2012 Mar 28;484(7394):339-44. doi: 10.1038/nature10960.
5
Trim28 is required for epigenetic stability during mouse oocyte to embryo transition.
Science. 2012 Mar 23;335(6075):1499-502. doi: 10.1126/science.1216154.
6
Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks.
PLoS Genet. 2012 Jan;8(1):e1002440. doi: 10.1371/journal.pgen.1002440. Epub 2012 Jan 5.
8
Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns.
Development. 2011 Dec;138(23):5057-65. doi: 10.1242/dev.065276.
10
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos.
Science. 2011 Oct 14;334(6053):194. doi: 10.1126/science.1212483. Epub 2011 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验