Suppr超能文献

理性设计、组合生物学和基因组学方法在大肠杆菌中构建 L-酪氨酸生产工程菌。

Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13538-43. doi: 10.1073/pnas.1206346109. Epub 2012 Aug 6.

Abstract

Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production. Subsequent strain characterization through transcriptional analysis and whole genome sequencing allowed complete phenotype reconstruction from well-defined mutations and point to important roles for both the acid stress resistance pathway and the stringent response of E. coli in imparting this phenotype. As such, this study presents one of the first examples in which cell-wide measurements have helped to elucidate the genetic and biochemical underpinnings of an engineered cellular property, leading to the total restoration of metabolite overproduction from specific chromosomal mutations.

摘要

尽管微生物代谢工程传统上依赖于理性和知识驱动的技术,但通过利用表型多样化和筛选的组合方法,可以进一步提高菌株的性能。在这里,我们展示了全局转录机制工程和高通量 L-酪氨酸筛选的联合使用,以提高大肠杆菌中 L-酪氨酸的产量。该方法成功地从两个独立的诱变文库(rpoA 和 rpoD)中生成了三个菌株,与已经具有高产能力的合理工程化亲本菌株相比,L-酪氨酸滴度提高了 114%。通过转录分析和全基因组测序进行的后续菌株表征允许从明确的突变完全重建表型,并指出大肠杆菌的酸应激抗性途径和严格响应在赋予该表型方面的重要作用。因此,这项研究提供了细胞全测量有助于阐明工程化细胞特性的遗传和生化基础的首批实例之一,导致特定染色体突变导致代谢物过量产生的完全恢复。

相似文献

1
Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13538-43. doi: 10.1073/pnas.1206346109. Epub 2012 Aug 6.
3
Genome engineering Escherichia coli for L-DOPA overproduction from glucose.
Sci Rep. 2016 Jul 15;6:30080. doi: 10.1038/srep30080.
4
Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
Microb Cell Fact. 2017 May 16;16(1):84. doi: 10.1186/s12934-017-0700-2.
5
Genetic engineering of Escherichia coli to improve L-phenylalanine production.
BMC Biotechnol. 2018 Jan 30;18(1):5. doi: 10.1186/s12896-018-0418-1.
6
Multiplexed tracking of combinatorial genomic mutations in engineered cell populations.
Nat Biotechnol. 2015 Jun;33(6):631-7. doi: 10.1038/nbt.3177. Epub 2015 Mar 23.
8
Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals.
Biotechnol Adv. 2013 Nov;31(6):976-85. doi: 10.1016/j.biotechadv.2013.03.010. Epub 2013 Apr 5.
10
Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering.
Metab Eng. 2018 May;47:10-20. doi: 10.1016/j.ymben.2018.02.007. Epub 2018 Mar 29.

引用本文的文献

1
Combing Directed Enzyme Evolution with Metabolic Engineering to Develop Efficient Microbial Cell Factories.
Chem Bio Eng. 2025 May 1;2(8):449-459. doi: 10.1021/cbe.5c00002. eCollection 2025 Aug 28.
2
Microbial engineering for monocyclic aromatic compounds production.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf003.
3
Computer-aided design and implementation of efficient biosynthetic pathways to produce high added-value products derived from tyrosine in .
Front Bioeng Biotechnol. 2024 Jun 24;12:1360740. doi: 10.3389/fbioe.2024.1360740. eCollection 2024.
5
Machine learning for metabolic pathway optimization: A review.
Comput Struct Biotechnol J. 2023 Mar 27;21:2381-2393. doi: 10.1016/j.csbj.2023.03.045. eCollection 2023.
6
Synergetic engineering of for efficient production of l-tyrosine.
Synth Syst Biotechnol. 2023 Nov 7;8(4):724-731. doi: 10.1016/j.synbio.2023.10.005. eCollection 2023 Dec.
8
Architectures and complex functions of tandem riboswitches.
RNA Biol. 2022 Jan;19(1):1059-1076. doi: 10.1080/15476286.2022.2119017.
10
Synthetic Scaffold Systems for Increasing the Efficiency of Metabolic Pathways in Microorganisms.
Biology (Basel). 2021 Mar 11;10(3):216. doi: 10.3390/biology10030216.

本文引用的文献

1
Production of aromatic compounds in bacteria.
Curr Opin Biotechnol. 2009 Dec;20(6):651-8. doi: 10.1016/j.copbio.2009.09.012. Epub 2009 Oct 28.
2
Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes.
Appl Environ Microbiol. 2009 May;75(9):2705-11. doi: 10.1128/AEM.01888-08. Epub 2009 Feb 27.
4
(p)ppGpp: still magical?
Annu Rev Microbiol. 2008;62:35-51. doi: 10.1146/annurev.micro.62.081307.162903.
5
Control of bacterial transcription, translation and replication by (p)ppGpp.
Curr Opin Microbiol. 2008 Apr;11(2):100-5. doi: 10.1016/j.mib.2008.02.001. Epub 2008 Mar 24.
6
Combinatorial engineering of microbes for optimizing cellular phenotype.
Curr Opin Chem Biol. 2008 Apr;12(2):168-76. doi: 10.1016/j.cbpa.2008.01.017. Epub 2008 Feb 29.
7
Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli.
Appl Environ Microbiol. 2008 Feb;74(4):1190-7. doi: 10.1128/AEM.02448-07. Epub 2007 Dec 21.
8
L-tyrosine production by recombinant Escherichia coli: fermentation optimization and recovery.
Biotechnol Bioeng. 2008 Mar 1;99(4):741-52. doi: 10.1002/bit.21765.
9
Perspectives of biotechnological production of L-tyrosine and its applications.
Appl Microbiol Biotechnol. 2007 Dec;77(4):751-62. doi: 10.1007/s00253-007-1243-y. Epub 2007 Oct 30.
10
Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli.
Appl Environ Microbiol. 2007 Jun;73(12):3877-86. doi: 10.1128/AEM.00200-07. Epub 2007 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验