Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Research-1S, Aurora, CO, USA.
RNA Biol. 2022 Jan;19(1):1059-1076. doi: 10.1080/15476286.2022.2119017.
Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
涉及单个配体与单个 RNA 适体结构域结合的核糖开关结构导致普通的剂量反应曲线,需要大约 100 倍的配体浓度变化才能覆盖基因调控的几乎整个动态范围。然而,通过串联使用多个核糖开关或适体结构域,这些配体感应结构可以产生额外的、复杂的基因控制结果。在当前的研究中,我们通过计算搜索了细菌中的串联核糖开关结构,以更全面地了解仅由 RNA 组成的基因控制元件的多样化生物学和生物化学功能。细菌利用许多不同的串联同源核糖开关结构排列方式来创建更“数字”的基因控制装置,这些装置在更窄的配体浓度范围内运行。此外,有时还会使用两个异源核糖开关适体来创建具有各种类型遗传输出的双输入布尔逻辑门。这些发现说明了仅基于 RNA 可以做出复杂的遗传决策。