Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
BMC Biotechnol. 2018 Jan 30;18(1):5. doi: 10.1186/s12896-018-0418-1.
L-phenylalanine (L-Phe) is an essential amino acid for mammals and applications expand into human health and nutritional products. In this study, a system level engineering was conducted to enhance L-Phe biosynthesis in Escherichia coli.
We inactivated the PTS system and recruited glucose uptake via combinatorial modulation of galP and glk to increase PEP supply in the Xllp01 strain. In addition, the HTH domain of the transcription factor TyrR was engineered to decrease the repression on the transcriptional levels of L-Phe pathway enzymes. Finally, proteomics analysis demonstrated the third step of the SHIK pathway (catalyzed via AroD) as the rate-limiting step for L-Phe production. After optimization of the aroD promoter strength, the titer of L-Phe increased by 13.3%. Analysis of the transcriptional level of genes involved in the central metabolic pathways and L-Phe biosynthesis via RT-PCR showed that the recombinant L-Phe producer exhibited a great capability in the glucose utilization and precursor (PEP and E4P) generation. Via systems level engineering, the L-Phe titer of Xllp21 strain reached 72.9 g/L in a 5 L fermenter under the non-optimized fermentation conditions, which was 1.62-times that of the original strain Xllp01.
The metabolic engineering strategy reported here can be broadly employed for developing genetically defined organisms for the efficient production of other aromatic amino acids and derived compounds.
L-苯丙氨酸(L-Phe)是哺乳动物必需的氨基酸,其应用扩展到人类健康和营养产品。在这项研究中,我们对大肠杆菌中的 L-Phe 生物合成进行了系统水平的工程改造。
我们通过组合调控 galP 和 glk 来失活 PTS 系统并招募葡萄糖摄取,以增加 Xllp01 菌株中 PEP 的供应。此外,通过工程改造转录因子 TyrR 的 HTH 结构域,降低了转录水平上对 L-Phe 途径酶的抑制作用。最后,蛋白质组学分析表明,SHIK 途径的第三步(由 AroD 催化)是 L-Phe 生产的限速步骤。在优化 aroD 启动子强度后,L-Phe 的产量增加了 13.3%。通过 RT-PCR 分析参与中心代谢途径和 L-Phe 生物合成的基因的转录水平,表明重组 L-Phe 生产菌在葡萄糖利用和前体(PEP 和 E4P)生成方面具有很强的能力。通过系统水平工程,Xllp21 菌株在未优化发酵条件下的 5L 发酵罐中的 L-Phe 产量达到 72.9g/L,是原始菌株 Xllp01 的 1.62 倍。
这里报道的代谢工程策略可以广泛应用于开发用于高效生产其他芳香族氨基酸和衍生化合物的遗传定义的生物体。