Suppr超能文献

一级决定 p53 聚集机制及其意义。

First-order rate-determining aggregation mechanism of p53 and its implications.

机构信息

MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13590-5. doi: 10.1073/pnas.1211557109. Epub 2012 Aug 6.

Abstract

Aggregation of p53 is initiated by first-order processes that generate an aggregation-prone state with parallel pathways of major or partial unfolding. Here, we elaborate the mechanism and explore its consequences, beginning with the core domain and extending to the full-length p53 mutant Y220C. Production of large light-scattering particles was slower than formation of the Thioflavin T-binding state and simultaneous depletion of monomer. EDTA removes Zn(2+) to generate apo-p53, which aggregated faster than holo-p53. Apo-Y220C also aggregated by both partial and major unfolding. Apo-p53 was not an obligatory intermediate in the aggregation of holo-p53, but affords a parallel pathway that may be relevant to oncogenic mutants with impaired Zn(2+) binding. Full-length tetrameric Y220C formed the Thioflavin T-binding state with similar rate constants to those of core domain, consistent with a unimolecular initiation that is unaffected by neighboring subunits, but very slowly formed small light-scattering particles. Apo-Y220C and aggregated holo-Y220C had little, if any, seeding effect on the initial polymerization of holo-Y220C (measured by Thioflavin T binding), consistent with initiation being a unimolecular process. But apo-Y220C and aggregated holo-Y220C accelerated somewhat the subsequent formation of light-scattering particles from holo-protein, implying coaggregation. The implications for cancer cells containing wild-type and unstable mutant alleles are that aggregation of wild-type p53 (or homologs) might not be seeded by aggregated mutant, but it could coaggregate with p53 or other cellular proteins that have undergone the first steps of aggregation and speed up the formation of microscopically observable aggregates.

摘要

p53 的聚集首先由一级过程引发,这些过程产生具有平行展开主要或部分途径的聚集倾向状态。在这里,我们详细阐述了这种机制,并探讨了其后果,从核心结构域开始,扩展到全长 p53 突变体 Y220C。大的光散射颗粒的产生速度比硫代黄素 T 结合状态的形成和单体的同时耗散慢。EDTA 去除 Zn(2+)以生成 apo-p53,其聚集速度比 holo-p53 快。apo-Y220C 也通过部分和主要展开进行聚集。apo-p53 不是 holo-p53 聚集的必需中间产物,但提供了一个平行途径,可能与 Zn(2+)结合受损的致癌突变体有关。全长四聚体 Y220C 以与核心结构域相似的速率常数形成硫代黄素 T 结合状态,这与不受相邻亚基影响的单分子引发一致,但非常缓慢地形成小的光散射颗粒。apo-Y220C 和聚集的 holo-Y220C 对 holo-Y220C 的初始聚合(通过硫代黄素 T 结合测量)几乎没有,如果有的话,种子效应,这与引发是一个单分子过程一致。但是 apo-Y220C 和聚集的 holo-Y220C 稍微加速了来自 holo-蛋白的光散射颗粒的随后形成,这意味着共聚集。对于含有野生型和不稳定突变体等位基因的癌细胞的影响是,野生型 p53(或同源物)的聚集可能不会被聚集的突变体引发,但它可能与已经经历聚集的第一步的 p53 或其他细胞蛋白共聚集,并加速显微镜可见聚集的形成。

相似文献

1
First-order rate-determining aggregation mechanism of p53 and its implications.一级决定 p53 聚集机制及其意义。
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13590-5. doi: 10.1073/pnas.1211557109. Epub 2012 Aug 6.
2
Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition.p53 致癌突变体聚集的动力学机制及其抑制。
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13584-9. doi: 10.1073/pnas.1211550109. Epub 2012 Aug 6.
3
Propagation of aggregated p53: Cross-reaction and coaggregation vs. seeding.聚集型p53的传播:交叉反应与共聚集对比种子效应
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2443-8. doi: 10.1073/pnas.1500262112. Epub 2015 Feb 9.

引用本文的文献

10
Anticancer Therapeutic Strategies Targeting p53 Aggregation.靶向 p53 聚集的抗癌治疗策略。
Int J Mol Sci. 2022 Sep 20;23(19):11023. doi: 10.3390/ijms231911023.

本文引用的文献

1
Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition.p53 致癌突变体聚集的动力学机制及其抑制。
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13584-9. doi: 10.1073/pnas.1211550109. Epub 2012 Aug 6.
2
Allele-specific p53 mutant reactivation.等位基因特异性 p53 突变体的重新激活。
Cancer Cell. 2012 May 15;21(5):614-625. doi: 10.1016/j.ccr.2012.03.042.
4
The amyloid state of proteins in human diseases.蛋白质在人类疾病中的淀粉样状态。
Cell. 2012 Mar 16;148(6):1188-203. doi: 10.1016/j.cell.2012.02.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验