Suppr超能文献

神经导管表面孔结构对周围神经再生的影响。

Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration.

机构信息

Department of Advanced Materials, Hannam University, Daejeon, South Korea.

出版信息

Tissue Eng Part C Methods. 2013 Mar;19(3):233-43. doi: 10.1089/ten.TEC.2012.0221. Epub 2012 Sep 13.

Abstract

Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration.

摘要

聚己内酯(PCL)/Pluronic F127 神经导管(NGC)具有不同的表面孔结构(纳米多孔内表面与微多孔内表面),但具有相似的物理和化学性质,是通过滚动不对称多孔 PCL/F127 膜的相对侧制造的。通过大鼠坐骨神经缺损模型研究了孔结构对 NGC 中周围神经再生的影响。结果表明,神经纤维和组织通过具有纳米多孔内表面的 NGC(Nanopore NGC)沿纵向方向再生,而通过具有微多孔内表面的 NGC(Micropore NGC)向 NGC 的多孔壁生长,因此与 Nanopore NGC 相比,其生长受到限制,这通过免疫组织化学评估(通过荧光显微镜用抗神经丝染色和 Hoechst 染色评估神经纤维的生长模式)、组织学评估(通过光显微镜用改良 Meyer 三色染色和甲苯胺蓝染色以及透射电子显微镜评估轴突和髓鞘的再生)和 FluoroGold 逆行追踪(用于近端和远端残端之间的重新连接)进行了研究。与不含有固定化 NGF 的 NGC 相比,固定在 NGC 孔表面上的神经生长因子(NGF)对神经再生的影响并不那么显著。具有不同表面孔结构但具有相同化学/物理性质的 NGC 系统似乎是一种很好的工具,可用于阐明 NGC 表面孔对神经再生的影响。

相似文献

1
Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration.
Tissue Eng Part C Methods. 2013 Mar;19(3):233-43. doi: 10.1089/ten.TEC.2012.0221. Epub 2012 Sep 13.
4
Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair.
Acta Biomater. 2021 Oct 15;134:116-130. doi: 10.1016/j.actbio.2021.07.028. Epub 2021 Jul 18.
5
Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient.
J Biomed Mater Res A. 2018 Jan;106(1):52-64. doi: 10.1002/jbm.a.36216. Epub 2017 Sep 23.
6
Ultrasound-stimulated peripheral nerve regeneration within asymmetrically porous PLGA/Pluronic F127 nerve guide conduit.
J Biomed Mater Res B Appl Biomater. 2010 Aug;94(2):359-366. doi: 10.1002/jbm.b.31659.
7
Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation.
Tissue Eng Part A. 2013 Dec;19(23-24):2674-85. doi: 10.1089/ten.TEA.2012.0735. Epub 2013 Aug 21.
9
Novel 3-D helix-flexible nerve guide conduits repair nerve defects.
Biomaterials. 2019 Jul;207:49-60. doi: 10.1016/j.biomaterials.2019.03.040. Epub 2019 Mar 28.

引用本文的文献

1
Injectable ion-coordinated double-network conductive hydrogel for spinal cord injury repair.
Front Bioeng Biotechnol. 2025 Jun 9;13:1618680. doi: 10.3389/fbioe.2025.1618680. eCollection 2025.
5
6
Visualization of porosity and pore size gradients in electrospun scaffolds using laser metrology.
PLoS One. 2023 Mar 9;18(3):e0282903. doi: 10.1371/journal.pone.0282903. eCollection 2023.
10
Natural-Based Biomaterials for Peripheral Nerve Injury Repair.
Front Bioeng Biotechnol. 2020 Oct 16;8:554257. doi: 10.3389/fbioe.2020.554257. eCollection 2020.

本文引用的文献

1
Enhanced guided bone regeneration by asymmetrically porous PCL/pluronic F127 membrane and ultrasound stimulation.
J Biomater Sci Polym Ed. 2012;23(13):1673-86. doi: 10.1163/092050611X589518. Epub 2012 May 11.
2
Creating growth factor gradients in three dimensional porous matrix by centrifugation and surface immobilization.
Biomaterials. 2011 Nov;32(32):8254-60. doi: 10.1016/j.biomaterials.2011.07.027. Epub 2011 Jul 27.
3
Repair of the transected rat sciatic nerve: matrix formation within implanted silicone tubes.
Restor Neurol Neurosci. 1993 Jan 1;5(3):197-204. doi: 10.3233/RNN-1993-5304.
4
Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration.
Tissue Eng Part C Methods. 2011 Jul;17(7):705-15. doi: 10.1089/ten.tec.2010.0565. Epub 2011 Apr 18.
6
Sustained growth factor delivery promotes axonal regeneration in long gap peripheral nerve repair.
Tissue Eng Part A. 2011 May;17(9-10):1263-75. doi: 10.1089/ten.TEA.2010.0507. Epub 2011 Feb 3.
7
Promoting regeneration of peripheral nerves in-vivo using new PCL-NGF/Tirofiban nerve conduits.
Biomaterials. 2011 Jan;32(3):734-43. doi: 10.1016/j.biomaterials.2010.09.023.
8
The effect of collagen-binding NGF-beta on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model.
Biomaterials. 2009 Sep;30(27):4649-56. doi: 10.1016/j.biomaterials.2009.05.037. Epub 2009 Jul 1.
10
The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps.
Biomaterials. 2008 Jul;29(21):3117-27. doi: 10.1016/j.biomaterials.2008.03.042. Epub 2008 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验