Suppr超能文献

秀丽隐杆线虫中卵母细胞生长和减数分裂成熟的调控。

Control of oocyte growth and meiotic maturation in Caenorhabditis elegans.

机构信息

Department of Genetics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Adv Exp Med Biol. 2013;757:277-320. doi: 10.1007/978-1-4614-4015-4_10.

Abstract

In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.

摘要

在有性繁殖的动物中,卵母细胞在二价体或双线期停滞,并响应激素重新开始减数分裂(减数分裂成熟)。女性减数分裂 I 中的染色体分离错误是人类出生缺陷的主要原因,而卵巢激素环境的年龄相关变化被认为是一个原因。秀丽隐杆线虫正在成为研究激素对减数分裂成熟控制的遗传范例。秀丽隐杆线虫和哺乳动物的减数分裂成熟过程有许多生物学和分子上的相似之处。主要精子蛋白(MSP)和促黄体生成素(LH)虽然在序列上没有关系,但都通过体细胞 Gα(s)-腺苷酸环化酶途径和体-生殖细胞缝隙连接通讯触发减数分裂恢复。在分子水平上,卵母细胞的反应显然涉及保守蛋白激酶途径的控制和卵母细胞中的转录后基因调控。在细胞水平上,这些反应包括皮质细胞骨架重排、核膜破裂、无中心体的减数分裂纺锤体的组装、染色体分离,以及可能对受精和卵母细胞到胚胎过渡很重要的变化。这一章重点介绍秀丽隐杆线虫卵母细胞生长和减数分裂成熟所需的信号机制,并讨论这些机制如何协调减数分裂的完成和卵母细胞到胚胎的过渡。

相似文献

1
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans.
Adv Exp Med Biol. 2013;757:277-320. doi: 10.1007/978-1-4614-4015-4_10.
2
Control of oocyte meiotic maturation in C. elegans.
Semin Cell Dev Biol. 2018 Dec;84:90-99. doi: 10.1016/j.semcdb.2017.12.005. Epub 2017 Dec 26.
4
Start me up: cell signaling and the journey from oocyte to embryo in C. elegans.
Dev Dyn. 2006 Mar;235(3):571-85. doi: 10.1002/dvdy.20662.
6
Control of oocyte meiotic maturation and fertilization.
WormBook. 2005 Dec 28:1-12. doi: 10.1895/wormbook.1.53.1.
9
Regulated trafficking of the MSP/Eph receptor during oocyte meiotic maturation in C. elegans.
Curr Biol. 2008 May 20;18(10):705-714. doi: 10.1016/j.cub.2008.04.043. Epub 2008 May 8.
10
Kinesin-1 prevents capture of the oocyte meiotic spindle by the sperm aster.
Dev Cell. 2012 Apr 17;22(4):788-98. doi: 10.1016/j.devcel.2012.01.010. Epub 2012 Mar 29.

引用本文的文献

1
Bidirectional transfer of a small membrane-impermeable molecule between the Caenorhabditis elegans intestine and germline.
J Biol Chem. 2024 Dec;300(12):107963. doi: 10.1016/j.jbc.2024.107963. Epub 2024 Nov 5.
2
Transcriptomic analysis of the spatiotemporal axis of oogenesis and fertilization in .
Front Cell Dev Biol. 2024 Aug 19;12:1436975. doi: 10.3389/fcell.2024.1436975. eCollection 2024.
3
Transcriptomic Analysis of the Spatiotemporal Axis of Oogenesis and Fertilization in .
bioRxiv. 2024 Jun 4:2024.06.03.597235. doi: 10.1101/2024.06.03.597235.
5
Regulation of oocyte maturation: Role of conserved ERK signaling.
Mol Reprod Dev. 2022 Sep;89(9):353-374. doi: 10.1002/mrd.23637. Epub 2022 Jul 31.
7
The PAF1 complex cell autonomously promotes oogenesis in Caenorhabditis elegans.
Genes Cells. 2022 Jun;27(6):409-420. doi: 10.1111/gtc.12938. Epub 2022 Apr 27.
8
Oocyte aging is controlled by mitogen-activated protein kinase signaling.
Aging Cell. 2021 Jun;20(6):e13386. doi: 10.1111/acel.13386. Epub 2021 Jun 1.

本文引用的文献

1
The oogenic germline starvation response in C. elegans.
PLoS One. 2011;6(12):e28074. doi: 10.1371/journal.pone.0028074. Epub 2011 Dec 2.
2
emb-1 encodes the APC16 subunit of the Caenorhabditis elegans anaphase-promoting complex.
Genetics. 2011 Oct;189(2):549-60. doi: 10.1534/genetics.111.131714. Epub 2011 Jul 20.
3
Identification of mutations that delay somatic or reproductive aging of Caenorhabditis elegans.
Genetics. 2011 Sep;189(1):341-56. doi: 10.1534/genetics.111.130450. Epub 2011 Jul 12.
4
CDK-1 inhibits meiotic spindle shortening and dynein-dependent spindle rotation in C. elegans.
J Cell Biol. 2011 Jun 27;193(7):1229-44. doi: 10.1083/jcb.201104008. Epub 2011 Jun 20.
5
The role of RanGTP gradient in vertebrate oocyte maturation.
Results Probl Cell Differ. 2011;53:235-67. doi: 10.1007/978-3-642-19065-0_12.
6
MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.
Dev Cell. 2011 May 17;20(5):677-88. doi: 10.1016/j.devcel.2011.04.009.
8
The RHO-1 RhoGTPase modulates fertility and multiple behaviors in adult C. elegans.
PLoS One. 2011 Feb 28;6(2):e17265. doi: 10.1371/journal.pone.0017265.
9
Assembly of RNP granules in stressed and aging oocytes requires nucleoporins and is coordinated with nuclear membrane blebbing.
Dev Biol. 2011 May 15;353(2):173-85. doi: 10.1016/j.ydbio.2011.02.028. Epub 2011 Mar 5.
10
The spindle assembly function of Caenorhabditis elegans katanin does not require microtubule-severing activity.
Mol Biol Cell. 2011 May;22(9):1550-60. doi: 10.1091/mbc.E10-12-0951. Epub 2011 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验