UMR CNRS 6625 Irmar, Bât. 22, Campus de Beaulieu, Université de Rennes 1, 35042, Rennes cedex, France.
J Biol Dyn. 2012;6:235-66. doi: 10.1080/17513758.2011.553392. Epub 2011 Jun 24.
In this work, we analyse a deterministic epidemic mathematical model motivated by the propagation of a hantavirus (Puumala hantavirus) within a bank vole population (Clethrionomys glareolus). The host population is split into juvenile and adult individuals. A heterogeneous spatial chronological age and infection age structure is considered, and also indirect transmission via the environment. Maturation rates for juvenile individuals are adult density-dependent. For the reaction-diffusion systems with age structures derived, we give global existence, uniqueness and global boundedness results. A model with transmission to humans is also studied here.
在这项工作中,我们分析了一个由汉坦病毒(普马拉汉坦病毒)在田鼠种群(黑线姬鼠)中传播所引发的确定性传染病数学模型。宿主种群分为幼年个体和成年个体。我们考虑了异质的时空年龄和感染年龄结构,以及通过环境的间接传播。幼年个体的成熟率依赖于成年个体的密度。对于所得到的具有年龄结构的反应扩散系统,我们给出了全局存在性、唯一性和全局有界性结果。我们还研究了一个有向人类传播的模型。