Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL 32611-8105, USA.
J Biol Dyn. 2012;6:299-332. doi: 10.1080/17513758.2011.573866. Epub 2011 May 24.
Influenza A virus evolves through two types of evolutionary mechanisms - drift and shift. These two evolutionary mechanisms allow the pathogen to infect us repeatedly, as well as occasionally create pandemics with large morbidity and mortality. Here we introduce a novel model that incorporates both evolutionary mechanisms. This necessitates the modelling of three types of strains - seasonal human strains, bird-to-human transmittable H5N1 strains and evolved pandemic H5N1 strain. We define reproduction and invasion reproduction numbers and use them to establish the presence of dominant and coexistence equilibria. We find that the amino acid substitution structure of human influenza can destabilize the human influenza equilibrium and sustained oscillations are possible. We find that for low levels of infection in domestic birds, these oscillations persist, inducing oscillations in the number of humans infected with the avian flu strain. The oscillations have a period of 365 days, similar to the one that can be observed in the cumulative number of human H5N1 cases reported by the World Health Organization (WHO). Furthermore, we establish some partial global results on the competition of the strains.
甲型流感病毒通过两种进化机制——漂移和转变来进化。这两种进化机制使病原体能够反复感染我们,偶尔还会导致发病率和死亡率都很高的大流行。在这里,我们引入了一种新的模型,该模型结合了这两种进化机制。这需要对三种类型的菌株进行建模——季节性的人类菌株、可由鸟类传播给人类的 H5N1 菌株和进化后的大流行 H5N1 菌株。我们定义了繁殖和入侵繁殖数量,并使用它们来建立优势和共存平衡点的存在。我们发现,人类流感的氨基酸替换结构可以使人类流感的平衡不稳定,并可能产生持续的振荡。我们发现,对于家禽中低水平的感染,这些振荡会持续存在,导致感染禽流感株的人类数量出现振荡。这些振荡的周期为 365 天,与世界卫生组织(WHO)报告的人类 H5N1 病例累计数量中可以观察到的周期相似。此外,我们还在菌株竞争方面建立了一些部分全局结果。