Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
J Neurosci. 2012 Aug 8;32(32):10841-53. doi: 10.1523/JNEUROSCI.6469-11.2012.
Delineation of key molecules that act epigenetically to transduce diverse stressors into established patterns of disease would facilitate the advent of preventive and disease-modifying therapeutics for a host of neurological disorders. Herein, we demonstrate that selective overexpression of the stress protein heme oxygenase-1 (HO-1) in astrocytes of novel GFAP.HMOX1 transgenic mice results in subcortical oxidative stress and mitochondrial damage/autophagy; diminished neuronal reelin content (males); induction of Nurr1 and Pitx3 with attendant suppression of their targeting miRNAs, 145 and 133b; increased tyrosine hydroxylase and α-synuclein expression with downregulation of the targeting miR-7b of the latter; augmented dopamine and serotonin levels in basal ganglia; reduced D1 receptor binding in nucleus accumbens; axodendritic pathology and altered hippocampal cytoarchitectonics; impaired neurovascular coupling; attenuated prepulse inhibition (males); and hyperkinetic behavior. The GFAP.HMOX1 neurophenotype bears resemblances to human schizophrenia and other neurodevelopmental conditions and implicates glial HO-1 as a prime transducer of inimical (endogenous and environmental) influences on the development of monoaminergic circuitry. Containment of the glial HO-1 response to noxious stimuli at strategic points of the life cycle may afford novel opportunities for the effective management of human neurodevelopmental and neurodegenerative conditions.
鉴定出能在表观遗传水平上介导各种应激源转化为特定疾病模式的关键分子,将有助于开发针对多种神经紊乱的预防性和疾病修正治疗方法。在此,我们证明了在新型 GFAP.HMOX1 转基因小鼠的星形胶质细胞中选择性过表达应激蛋白血红素加氧酶-1(HO-1),会导致皮质下氧化应激和线粒体损伤/自噬;神经元 reelin 含量减少(雄性);Nurr1 和 Pitx3 的诱导及其靶向 miRNA,145 和 133b 的抑制;酪氨酸羟化酶和α-突触核蛋白表达增加,后者的靶向 miR-7b 下调;基底神经节多巴胺和血清素水平升高;伏隔核中 D1 受体结合减少;轴突树突病理学和海马结构改变;神经血管耦联受损;条件性回避反射(雄性)受损;以及多动行为。GFAP.HMOX1 神经表型与人类精神分裂症和其他神经发育状况相似,表明胶质 HO-1 是有害(内源性和环境)因素对单胺能回路发育产生影响的主要转导因子。在生命周期的关键点控制胶质 HO-1 对有害刺激的反应,可能为有效管理人类神经发育和神经退行性疾病提供新的机会。