Suppr超能文献

基于经验模态分解的去趋势样本熵在阿尔茨海默病脑电图中的应用。

Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer's disease.

机构信息

Graduate Institute of Biomedical Electronics and Bioinformations, National Taiwan University, Taipei, Taiwan.

出版信息

J Neurosci Methods. 2012 Sep 30;210(2):230-7. doi: 10.1016/j.jneumeth.2012.07.002. Epub 2012 Jul 31.

Abstract

Quantitative electroencephalographs (qEEG) provide a potential method to objectively quantify the cortical activations in Alzheimer's disease (AD), but they are too insensitive to probe the alteration of EEG in the early AD. The sample entropy (SaEn) attempts to quantify the complex information embedded in EEG non-linearly, which fits in that EEG originates from non-linear interactions. However, a technical issue which has been ignored by most researchers is that the signal should be stationary. In order to resolve the non-stationarity of SaEn in EEG to improve the sensitivity, an empirical mode decomposition (EMD) was applied for detrending in this study. Twenty-seven AD patients (9M/18F; mean age 74.0±1.5 years) were included. Their initial Minimal Mental Status Examination was 19.3±0.7. They received the first resting-awake 30-mine EEG before the therapy. Five of them received a follow-up examination within 6 months after the therapy. The 30-s EEG data without artifacts were selected and analyzed with a new proposed method, "EMD-based detrended-SaEn" to attenuate the influence of intrinsic non-stationarity. The correlation factors in 27 AD patients showed a moderate correlation (0.361-0.523, p<0.05) between MMSE and EMD-based detrended SaEn in Fp1, Fp2, F4 and T3. There was a high correlation (Correlation coefficient=0.975, p<0.05) between the changes of MMSE and the changes of EMD-based detrended-SaEn in F7 in 5 follow-up patients. The dynamic complexity of EEG fluctuations is degraded by pathological degeneration, and EMD-based detrended SaEn provides an objective, non-invasive and non-expensive tool for evaluating and following AD patients.

摘要

定量脑电图(qEEG)提供了一种潜在的方法来客观量化阿尔茨海默病(AD)的皮质激活,但它们对探测 AD 早期的 EEG 变化太不敏感。样本熵(SaEn)试图从非线性角度量化 EEG 中嵌入的复杂信息,这与 EEG 源自非线性相互作用的观点相符。然而,一个被大多数研究人员忽略的技术问题是,信号应该是稳定的。为了解决 SaEn 在 EEG 中的非平稳性以提高灵敏度,本研究应用经验模态分解(EMD)进行去趋势处理。纳入 27 例 AD 患者(9 男/18 女;平均年龄 74.0±1.5 岁)。他们的初始简易精神状态检查为 19.3±0.7。在治疗前,他们接受了第一次静息-觉醒 30 分钟 EEG。其中 5 例在治疗后 6 个月内接受了随访检查。选择无伪迹的 30 秒 EEG 数据,并采用一种新提出的方法“基于 EMD 的去趋势 SaEn”进行分析,以减弱内在非平稳性的影响。27 例 AD 患者的相关因素显示 MMSE 与 Fp1、Fp2、F4 和 T3 中基于 EMD 的去趋势 SaEn 之间呈中度相关(0.361-0.523,p<0.05)。在 5 例随访患者中,MMSE 的变化与基于 EMD 的去趋势-SaEn 在 F7 的变化之间存在高度相关(相关系数=0.975,p<0.05)。病理性退变降低了 EEG 波动的动态复杂性,基于 EMD 的去趋势 SaEn 为评估和随访 AD 患者提供了一种客观、无创且经济的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验