Department of Mechanical, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
ACS Nano. 2012 Sep 25;6(9):7867-78. doi: 10.1021/nn303145j. Epub 2012 Aug 16.
Conventional graphitic anodes in lithium-ion batteries cannot provide high-power densities due to slow diffusivity of lithium ions in the bulk electrode material. Here we report photoflash and laser-reduced free-standing graphene paper as high-rate capable anodes for lithium-ion batteries. Photothermal reduction of graphene oxide yields an expanded structure with micrometer-scale pores, cracks, and intersheet voids. This open-pore structure enables access to the underlying sheets of graphene for lithium ions and facilitates efficient intercalation kinetics even at ultrafast charge/discharge rates of >100 C. Importantly, photothermally reduced graphene anodes are structurally robust and display outstanding stability and cycling ability. At charge/discharge rates of ~40 C, photoreduced graphene anodes delivered a steady capacity of ~156 mAh/g(anode) continuously over 1000 charge/discharge cycles, providing a stable power density of ~10 kW/kg(anode). Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization.
传统的锂离子电池石墨负极由于锂离子在块状电极材料中的扩散速度较慢,因此无法提供高功率密度。在这里,我们报道了光闪和激光还原的自支撑石墨烯纸作为高倍率能力的锂离子电池负极。氧化石墨烯的光热还原产生了具有微米级孔、裂纹和层间空隙的膨胀结构。这种开孔结构使得锂离子可以进入石墨烯的底层,并促进有效的嵌入动力学,即使在超快的充/放电速率(>100 C)下也是如此。重要的是,光热还原的石墨烯负极具有结构坚固性,并显示出出色的稳定性和循环能力。在充/放电速率约为 40 C 的情况下,光还原的石墨烯负极在 1000 次充/放电循环中持续提供稳定的约 156 mAh/g(负极)的容量,提供稳定的约 10 kW/kg(负极)的功率密度。这种电极有望通过相对简单和低成本的制造工艺进行大规模生产,从而为商业化提供了明确的途径。