Suppr超能文献

默克尔细胞癌的免疫组织化学预后评估:p63表达而非多瘤病毒状态与预后相关。

Immunohistochemical prognostication of Merkel cell carcinoma: p63 expression but not polyomavirus status correlates with outcome.

作者信息

Hall Brian J, Pincus Laura B, Yu Siegrid S, Oh Dennis H, Wilson Andrew R, McCalmont Timothy H

机构信息

Department of Pathology, University of Utah, Salt Lake City, UT, USA.

出版信息

J Cutan Pathol. 2012 Oct;39(10):911-7. doi: 10.1111/j.1600-0560.2012.01964.x. Epub 2012 Aug 6.

Abstract

Merkel cell carcinoma (MCC) represents a cutaneous malignancy with high associated mortality. Numerous studies have attempted to define characteristics to more accurately predict outcome. Two recent studies have demonstrated that Merkel cell polyomavirus (MCPyV) seropositivity correlated with a better prognosis, while a third study revealed no difference. Expression of p63 by tumor cell nuclei has been shown to be associated with a worse prognosis in a European cohort. To better understand the relationship between prognosis and MCPyV or p63 status, we used immunohistochemistry to evaluate both attributes in 36 US patients with MCC. Our results show that when considered as a binary variable, p63 expression represents a strong risk factor (p < 0.0001, hazards ratio (HR) = ∞) for shortened survival. In addition, our results show that MCPyV status does not correlate with survival (p = 0.6067, HR = 1.27). Our study corroborates the European observation that p63 immunoexpression is useful as a prognostic tool. Larger studies will need to be performed in order to determine whether p63 status should be included in MCC staging, since our study is limited by its relative small size.

摘要

默克尔细胞癌(MCC)是一种具有高相关死亡率的皮肤恶性肿瘤。众多研究试图确定相关特征以更准确地预测预后。最近的两项研究表明,默克尔细胞多瘤病毒(MCPyV)血清阳性与较好的预后相关,而第三项研究则未发现差异。在一个欧洲队列中,肿瘤细胞核中p63的表达已被证明与较差的预后相关。为了更好地理解预后与MCPyV或p63状态之间的关系,我们使用免疫组织化学对36例美国MCC患者的这两个指标进行了评估。我们的结果表明,当将p63表达视为二元变量时,它是生存缩短的一个强风险因素(p < 0.0001,风险比(HR)= ∞)。此外,我们的结果表明,MCPyV状态与生存无关(p = 0.6067,HR = 1.27)。我们的研究证实了欧洲的观察结果,即p63免疫表达可作为一种预后工具。由于我们的研究规模相对较小,需要进行更大规模的研究以确定p63状态是否应纳入MCC分期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验