Suppr超能文献

肌肉在不同步行速度下对横向地面反作用力的贡献。

Contributions of muscles to mediolateral ground reaction force over a range of walking speeds.

机构信息

Department of Computer Science, Stanford University, Stanford, CA 94305-5450, USA.

出版信息

J Biomech. 2012 Sep 21;45(14):2438-43. doi: 10.1016/j.jbiomech.2012.06.037. Epub 2012 Aug 9.

Abstract

Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.

摘要

行走时身体横向运动控制受损是一个重要的健康问题。开发改善横向控制的治疗方法具有挑战性,部分原因是肌肉在不受影响的行走过程中调节横向地面反作用力(从而调节身体质心的横向加速度)的机制尚未得到很好的理解。为了研究这一点,我们检查了八个不受影响的受试者在四种速度下行走时的横向地面反作用力,并通过分析这些受试者的肌肉驱动模拟来确定肌肉、重力和速度相关力对横向地面反作用力的贡献。在早期站立阶段(0-6%步态周期),领先脚的最大地面反力向外侧,随着步行速度的增加而显著增加(p<0.05)。在早期单支撑阶段(14-30%步态周期),支撑脚的最大地面反力向内侧,随着速度的增加而显著增加(p<0.01)。在所有步行速度下,肌肉对横向地面反作用力的贡献都超过 92%,而重力和速度相关力的贡献相对较小。肌肉通过协同作用来协调横向加速度,即外展肌产生的横向地面反作用力和膝关节伸肌、跖屈肌和内收肌产生的横向地面反作用力之间的相互作用。我们的发现表明,在双腿支撑时从一条腿向另一条腿转移体重期间,有助于前进和体重支撑的肌肉也调节身体质心的横向加速度。

相似文献

1
Contributions of muscles to mediolateral ground reaction force over a range of walking speeds.
J Biomech. 2012 Sep 21;45(14):2438-43. doi: 10.1016/j.jbiomech.2012.06.037. Epub 2012 Aug 9.
2
Muscle coordination of mediolateral balance in normal walking.
J Biomech. 2010 Aug 10;43(11):2055-64. doi: 10.1016/j.jbiomech.2010.04.010. Epub 2010 May 7.
3
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
J Biomech. 2010 May 28;43(8):1450-5. doi: 10.1016/j.jbiomech.2010.02.009. Epub 2010 Mar 16.
4
How gravity and muscle action control mediolateral center of mass excursion during slow walking: a simulation study.
Gait Posture. 2014 Jan;39(1):91-7. doi: 10.1016/j.gaitpost.2013.06.004. Epub 2013 Jun 28.
5
Contributions of muscles to terminal-swing knee motions vary with walking speed.
J Biomech. 2007;40(16):3660-71. doi: 10.1016/j.jbiomech.2007.06.006. Epub 2007 Jul 19.
6
Muscle contributions to whole-body sagittal plane angular momentum during walking.
J Biomech. 2011 Jan 4;44(1):6-12. doi: 10.1016/j.jbiomech.2010.08.015. Epub 2010 Sep 15.
8
Muscles that support the body also modulate forward progression during walking.
J Biomech. 2006;39(14):2623-30. doi: 10.1016/j.jbiomech.2005.08.017. Epub 2005 Oct 10.
9
Lower-limb muscle function in healthy young and older adults across a range of walking speeds.
Gait Posture. 2022 May;94:124-130. doi: 10.1016/j.gaitpost.2022.03.003. Epub 2022 Mar 8.
10
Muscle contributions to mediolateral and anteroposterior foot placement during walking.
J Biomech. 2019 Oct 11;95:109310. doi: 10.1016/j.jbiomech.2019.08.004. Epub 2019 Aug 9.

引用本文的文献

3
Effect of hyperthermia on simulated muscle activation in female when crossing obstacle.
Sci Rep. 2024 May 9;14(1):10635. doi: 10.1038/s41598-024-61536-y.
4
The Impact of Excessive Body Weight and Foot Pronation on Running Kinetics: A Cross-Sectional Study.
Sports Med Open. 2023 Dec 6;9(1):116. doi: 10.1186/s40798-023-00663-8.
5
Multi-Site Identification and Generalization of Clusters of Walking Behaviors in Individuals With Chronic Stroke and Neurotypical Controls.
Neurorehabil Neural Repair. 2023 Dec;37(11-12):810-822. doi: 10.1177/15459683231212864. Epub 2023 Nov 17.
6
Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking.
PLoS Comput Biol. 2023 Aug 7;19(8):e1010712. doi: 10.1371/journal.pcbi.1010712. eCollection 2023 Aug.
7
Ground reaction forces during double limb stances while walking in individuals with unilateral transfemoral amputation.
Front Bioeng Biotechnol. 2023 Jan 12;10:1041060. doi: 10.3389/fbioe.2022.1041060. eCollection 2022.
8
Effect of core training on skill-related physical fitness performance among soccer players: A systematic review.
Front Public Health. 2023 Jan 5;10:1046456. doi: 10.3389/fpubh.2022.1046456. eCollection 2022.
10
Muscle function during single leg landing.
Sci Rep. 2022 Jul 7;12(1):11486. doi: 10.1038/s41598-022-15024-w.

本文引用的文献

1
Limits of recovery against slip-induced falls while walking.
J Biomech. 2011 Oct 13;44(15):2607-13. doi: 10.1016/j.jbiomech.2011.08.018. Epub 2011 Sep 6.
2
Mind your step: metabolic energy cost while walking an enforced gait pattern.
Gait Posture. 2011 Apr;33(4):544-9. doi: 10.1016/j.gaitpost.2011.01.007. Epub 2011 Feb 16.
3
Muscle contributions to propulsion and support during running.
J Biomech. 2010 Oct 19;43(14):2709-16. doi: 10.1016/j.jbiomech.2010.06.025. Epub 2010 Aug 9.
4
Muscle coordination of mediolateral balance in normal walking.
J Biomech. 2010 Aug 10;43(11):2055-64. doi: 10.1016/j.jbiomech.2010.04.010. Epub 2010 May 7.
5
A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.
Gait Posture. 2010 Feb;31(2):153-8. doi: 10.1016/j.gaitpost.2009.09.016. Epub 2009 Nov 8.
6
Effects of Down syndrome on three-dimensional motion during walking at different speeds.
Gait Posture. 2009 Oct;30(3):345-50. doi: 10.1016/j.gaitpost.2009.06.003.
7
Lower trunk motion and speed-dependence during walking.
J Neuroeng Rehabil. 2009 Apr 9;6:9. doi: 10.1186/1743-0003-6-9.
9
Are current measurements of lower extremity muscle architecture accurate?
Clin Orthop Relat Res. 2009 Apr;467(4):1074-82. doi: 10.1007/s11999-008-0594-8. Epub 2008 Oct 30.
10
Muscle contributions to support and progression over a range of walking speeds.
J Biomech. 2008 Nov 14;41(15):3243-52. doi: 10.1016/j.jbiomech.2008.07.031. Epub 2008 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验