Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
Biotechnol Prog. 2012 Sep-Oct;28(5):1271-7. doi: 10.1002/btpr.1611. Epub 2012 Sep 21.
The alkaline amylase requires high resistance towards chemical oxidation for use in the detergent and textile industries. This work aims to improve the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica by site-directed mutagenesis based on the enzyme structure model. Five mutants were created by individually replacing methionine at positions 145, 214, 229, 247, and 317 in the amino acid sequence of alkaline amylase with oxidative-resistant serine. The pH stability of the mutant enzymes was almost the same as that of the wild-type (WT) enzyme (pH 7.0-11.0). The stable temperature range of the mutant enzymes M145S and M247S decreased from <50 °C of the WT to <40 °C, while the thermal stability of the other three mutant enzymes (M214S, M229S, and M317S) was almost the same as that of the WT enzyme. The catalytic efficiency (k(cat)/K(m)) of all the mutant enzymes decreased when compared to WT enzyme. The mutant enzymes showed increased activity in the presence of surfactants Tween-60 and sodium dodecyl sulfate. When incubated with 500 mM H(2)O(2) at 35 °C for 5 h, the WT enzyme retained only 13.3% of its original activity, while the mutant enzymes M145S, M214S, M229S, M247S, and M317S retained 55.6, 70.2, 54.2, 62.5, and 46.4% of the original activities, respectively. The results indicated that the substitution of methionine residues at the catalytic domains with oxidative-resistant serine can significantly improve the oxidative stability of alkaline amylase. This work provides an effective strategy to improve the oxidative stability of amylase, and the high oxidation resistance of the mutant enzymes shows their potential applications in the detergent and textile industries.
碱性淀粉酶需要具有高耐化学氧化能力,才能在洗涤剂和纺织工业中使用。本工作旨在通过基于酶结构模型的定点突变来提高嗜碱的 Alkalimonas amylolytica 碱性淀粉酶的氧化稳定性。通过分别将碱性淀粉酶氨基酸序列中第 145、214、229、247 和 317 位的蛋氨酸突变为氧化抗性丝氨酸,共构建了 5 个突变体。突变体酶的 pH 稳定性与野生型(WT)酶(pH7.0-11.0)几乎相同。突变体酶 M145S 和 M247S 的稳定温度范围从 WT 的<50°C 降低到<40°C,而其他三个突变体酶(M214S、M229S 和 M317S)的热稳定性与 WT 酶几乎相同。与 WT 酶相比,所有突变体酶的催化效率(kcat/Km)都降低了。突变体酶在存在表面活性剂 Tween-60 和十二烷基硫酸钠时显示出更高的活性。在 35°C 下用 500mM H2O2孵育 5 小时后,WT 酶仅保留了其原始活性的 13.3%,而突变体酶 M145S、M214S、M229S、M247S 和 M317S 分别保留了原始活性的 55.6%、70.2%、54.2%、62.5%和 46.4%。结果表明,在催化结构域将蛋氨酸残基突变为氧化抗性丝氨酸可显著提高碱性淀粉酶的氧化稳定性。这项工作为提高淀粉酶的氧化稳定性提供了一种有效的策略,突变体酶的高氧化抗性表明它们在洗涤剂和纺织工业中有潜在的应用。