Suppr超能文献

基于结构的合理设计以及在解淀粉碱单胞菌碱性α-淀粉酶表面引入精氨酸以提高热稳定性。

Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability.

作者信息

Deng Zhuangmei, Yang Haiquan, Shin Hyun-dong, Li Jianghua, Liu Long

机构信息

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.

出版信息

Appl Microbiol Biotechnol. 2014 Nov;98(21):8937-45. doi: 10.1007/s00253-014-5790-8. Epub 2014 May 10.

Abstract

In this study, the thermostability of an alkaline α-amylase from Alkalimonas amylolytica was significantly improved through structure-based rational and the introduction of multiple arginines (Arg) on the protein surface. Based on an analysis of the tertiary structure, seven residues (glutamine (Gln) 166, Gln 169, serine (Ser) 270, lysine (Lys) 315, Gln 327, asparagine (Asn) 346, and Asn 423) were selected as engineering targets and individually replaced with arginine. Five of the seven single-mutated enzymes-S270R, K315R, Q327R, N346R, and N423R-showed enhanced thermostability. Multiple arginines were subsequently introduced on the protein surface, and the quintuple-mutated enzyme S270R/K315R/Q327R/N346R/N423R showed a 6.4-fold improvement in half-life at 60 and a 5.4 °C increase in melting temperature (T m) compared with those of wild-type enzyme. Concomitantly, the optimal temperature, optimal pH, and catalytic efficiency of this mutated enzyme also improved. The mutated enzyme displayed a large shift in optimal pH from 9.5 to 11.0. In addition, the optimum temperature increased from 50 to 55 °C, and the catalytic efficiency (k cat/K m) increased from 1.8 × 10(4) to 3.6 × 10(4) L/(g · min). The intramolecular interactions of mutated enzymes that contributed to increased thermostability were examined through comparative analysis of the model structures of wild-type and mutated enzymes. The thermostable mutated enzymes generated in this study have potential applications in the textile industry.

摘要

在本研究中,通过基于结构的合理设计以及在蛋白质表面引入多个精氨酸(Arg),显著提高了嗜淀粉碱单胞菌碱性α-淀粉酶的热稳定性。基于对三级结构的分析,选择了七个残基(谷氨酰胺(Gln)166、Gln 169、丝氨酸(Ser)270、赖氨酸(Lys)315、Gln 327、天冬酰胺(Asn)346和Asn 423)作为工程改造靶点,并分别用精氨酸进行替换。七个单突变酶中的五个——S270R、K315R、Q327R、N346R和N423R——表现出增强的热稳定性。随后在蛋白质表面引入多个精氨酸,与野生型酶相比,五重突变酶S270R/K315R/Q327R/N346R/N423R在60℃下的半衰期提高了6.4倍,解链温度(Tm)升高了5.4℃。同时,该突变酶的最适温度、最适pH值和催化效率也有所提高。突变酶的最适pH值从9.5大幅移至11.0。此外,最适温度从50℃升至55℃,催化效率(kcat/Km)从1.8×10⁴提高到3.6×10⁴L/(g·min)。通过对野生型和突变型酶的模型结构进行比较分析,研究了导致热稳定性增加的突变酶分子内相互作用。本研究中产生的热稳定突变酶在纺织工业中具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验