Suppr超能文献

计算分析和小分子 miRNA 调节剂的预测建模。

Computational analysis and predictive modeling of small molecule modulators of microRNA.

机构信息

GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India.

出版信息

J Cheminform. 2012 Aug 13;4(1):16. doi: 10.1186/1758-2946-4-16.

Abstract

BACKGROUND

MicroRNAs (miRNA) are small endogenously transcribed regulatory RNA which modulates gene expression at a post transcriptional level. These small RNAs have now been shown to be critical regulators in a number of biological processes in the cell including pathophysiology of diseases like cancers. The increasingly evident roles of microRNA in disease processes have also motivated attempts to target them therapeutically. Recently there has been immense interest in understanding small molecule mediated regulation of RNA, including microRNA.

RESULTS

We have used publicly available datasets of high throughput screens on small molecules with potential to inhibit microRNA. We employed computational methods based on chemical descriptors and machine learning to create predictive computational models for biological activity of small molecules. We further used a substructure based approach to understand common substructures potentially contributing to the activity.

CONCLUSION

We generated computational models based on Naïve Bayes and Random Forest towards mining small RNA binding molecules from large molecular datasets. We complement this with substructure based approach to identify and understand potentially enriched substructures in the active dataset. We use this approach to identify miRNA binding potential of a set of approved drugs, suggesting a probable novel mechanism of off-target activity of these drugs. To the best of our knowledge, this is the first and most comprehensive computational analysis towards understanding RNA binding activities of small molecules and predictive modeling of these activities.

摘要

背景

MicroRNAs(miRNA)是一种小型内源性转录调控 RNA,可在转录后水平调节基因表达。这些小 RNA 现已被证明是细胞中许多生物学过程的关键调节剂,包括癌症等疾病的病理生理学。miRNA 在疾病过程中的作用越来越明显,这也促使人们试图将其作为治疗靶点。最近,人们对小分子介导的 RNA 调节,包括 miRNA 的调节,产生了浓厚的兴趣。

结果

我们使用了具有抑制 miRNA 潜力的小分子高通量筛选的公开数据集。我们采用基于化学描述符和机器学习的计算方法,为小分子的生物学活性创建预测性计算模型。我们进一步使用基于子结构的方法来了解可能对活性有贡献的常见子结构。

结论

我们生成了基于朴素贝叶斯和随机森林的计算模型,用于从大型分子数据集中挖掘与小 RNA 结合的分子。我们通过基于子结构的方法来补充和识别活性数据集中可能富集的潜在子结构。我们使用这种方法来确定一组已批准药物的 miRNA 结合潜力,这表明这些药物可能存在新的非靶标活性机制。据我们所知,这是第一个也是最全面的关于小分子 RNA 结合活性的计算分析和这些活性的预测建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffdd/3466443/cfff926c3161/1758-2946-4-16-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验