Suppr超能文献

贝叶斯和频率派方法在纳入外部信息预测前列腺癌风险中的比较。

A comparison of Bayesian and frequentist approaches to incorporating external information for the prediction of prostate cancer risk.

机构信息

Genetics Division, GlaxoSmithKline, Stevenage, United Kingdom.

出版信息

Genet Epidemiol. 2012 Jan;36(1):71-83. doi: 10.1002/gepi.21600.

Abstract

We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.

摘要

我们目前使用的临床变量,除了提出了最全面的预测效益的比较,以目前的临床变量,使用基因型数据的 33 个单核苷酸多态性(SNP)在 1547 名高加索男性从安慰剂组的减少前列腺癌事件(REDUCE ® )试验。此外,我们进行了详细的比较三种技术纳入临床风险预测的遗传学。第一种方法是一个标准的逻辑回归模型,其中包括单独的术语,为临床协变量和每个遗传标记。这种方法忽略了大量的外部信息,这些信息是关于这些全基因组关联研究(GWAS)复制的 SNP 的效应大小。第二种和第三种方法探讨了两种可能的方法纳入荟萃分析的外部 SNP 效应估计 - 一个通过加权的前列腺癌“风险”评分,仅基于荟萃分析的估计,另一种通过信息先验在贝叶斯逻辑回归模型中结合当前和以前的数据。所有方法都证明了在纳入遗传学方面有了轻微的改进。纳入外部信息的两种方法的接收者操作特征 AUC 增加从 0.61 到 0.64。我们的方法比较的价值可能在于观察到性能的相似性,而不是三个非常不同的资源需求的方法之间的差异。包括外部信息的两种方法表现最好,但只有轻微的差异,尽管在复杂性上有很大的差异。

相似文献

引用本文的文献

8
Cancer pharmacogenomics: strategies and challenges.癌症药物基因组学:策略与挑战。
Nat Rev Genet. 2013 Jan;14(1):23-34. doi: 10.1038/nrg3352. Epub 2012 Nov 27.
9
Using graded response model for the prediction of prostate cancer risk.使用分级反应模型预测前列腺癌风险。
Hum Genet. 2012 Aug;131(8):1327-36. doi: 10.1007/s00439-012-1160-8. Epub 2012 Mar 30.

本文引用的文献

2
Effect of dutasteride on the risk of prostate cancer.度他雄胺对前列腺癌风险的影响。
N Engl J Med. 2010 Apr 1;362(13):1192-202. doi: 10.1056/NEJMoa0908127.
9
Urinary prostate cancer 3 test: toward the age of reason?尿液前列腺癌 3 项检测:是否已到合理应用的年龄?
Urology. 2010 Feb;75(2):447-53. doi: 10.1016/j.urology.2009.03.046. Epub 2009 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验