Nur Darfiana, Hudson Irene, Stojanovski Elizabeth
Tadulako University, Palu 94118, Indonesia.
Curtin University, Bentley WA 6102, Australia.
Heliyon. 2020 Sep 21;6(9):e04835. doi: 10.1016/j.heliyon.2020.e04835. eCollection 2020 Sep.
Dependence between studies in meta-analysis is an assumption which is imposed on the structure of hierarchical Bayesian meta-analytic models. Dependence in meta-analysis can occur as a result of study reports using the same data or from the same authors. In this paper, the hierarchical Bayesian delta-splitting (HBDS) model (Steven and Taylor, 2009), which allows for dependence between studies and sub-studies by introducing dependency at the sampling and hierarchical levels, is developed using Bayesian approaches. Parameter estimation obtained from the joint posterior distributions of all parameters for the HBDS model was conducted using the Metropolis within Gibbs algorithm. The estimation of parameters for simulation studies using code confirmed the consistency of the model parameters. These parameters were then tested successfully on studies to assess the effects of native-language vocabulary aids on second language reading as a case study.
元分析中各研究之间的依赖性是强加于分层贝叶斯元分析模型结构的一种假设。元分析中的依赖性可能源于使用相同数据的研究报告或同一组作者。在本文中,通过贝叶斯方法开发了分层贝叶斯增量拆分(HBDS)模型(史蒂文和泰勒,2009年),该模型通过在抽样和分层层面引入依赖性,考虑了各研究及子研究之间的依赖性。使用吉布斯抽样中的梅特罗波利斯算法,从HBDS模型所有参数的联合后验分布中进行参数估计。使用代码对模拟研究的参数估计证实了模型参数具有一致性。然后,作为案例研究,在评估母语词汇辅助工具对第二语言阅读影响的研究中对这些参数进行了成功测试。