Suppr超能文献

基于单核苷酸多态性和家族史的两种前列腺癌绝对风险估计方法的比较。

Comparison of two methods for estimating absolute risk of prostate cancer based on single nucleotide polymorphisms and family history.

机构信息

Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 2010 Apr;19(4):1083-8. doi: 10.1158/1055-9965.EPI-09-1176. Epub 2010 Mar 23.

Abstract

Disease risk-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies have the potential to be used for disease risk prediction. An important feature of these risk-associated SNPs is their weak individual effect but stronger cumulative effect on disease risk. Several approaches are commonly used to model the combined effect in risk prediction, but their performance is unclear. We compared two methods to model the combined effect of 14 prostate cancer risk-associated SNPs and family history for the estimation of absolute risk for prostate cancer in a population-based case-control study in Sweden (2,899 cases and 1,722 controls). Method 1 weighs each risk allele equally using a simple method of counting the number of risk alleles, whereas method 2 weighs each risk SNP differently based on its odds ratio. We found considerable differences between the two methods. Absolute risk estimates from method 1 were generally higher than those of method 2, especially among men at higher risk. The difference in the overall discriminative performance, measured by area under the curve of the receiver operating characteristic, was small between method 1 (0.614) and method 2 (0.618), P = 0.20. However, the performance of these two methods in identifying high-risk individuals (2- or 3-fold higher than average risk), measured by positive predictive values, was higher for method 2 than for method 1. These results suggest that method 2 is superior to method 1 in estimating absolute risk if the purpose of risk prediction is to identify high-risk individuals.

摘要

从全基因组关联研究中确定的与疾病风险相关的单核苷酸多态性(SNP)有可能用于疾病风险预测。这些与风险相关的 SNP 的一个重要特征是它们对疾病风险的个体效应较弱,但累积效应较强。目前常用几种方法来对风险相关 SNP 进行联合效应建模,但这些方法的性能尚不清楚。我们比较了两种方法,用于建模 14 个前列腺癌风险相关 SNP 与家族史在瑞典基于人群的病例对照研究(2899 例病例和 1722 例对照)中对前列腺癌绝对风险的估计。方法 1 使用简单的计数风险等位基因数的方法对每个风险等位基因进行同等加权,而方法 2 则根据其比值比对每个风险 SNP 进行不同的加权。我们发现这两种方法之间存在相当大的差异。方法 1 的绝对风险估计值通常高于方法 2 的估计值,尤其是在风险较高的男性中。方法 1(0.614)和方法 2(0.618)之间的曲线下面积(ROC)的整体判别性能差异较小,P = 0.20。然而,从阳性预测值来看,方法 2 比方法 1 更能识别高危个体(风险比平均水平高 2 倍或 3 倍)。这些结果表明,如果风险预测的目的是识别高危个体,则方法 2 在估计绝对风险方面优于方法 1。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验