Mittenthal Jay, Caetano-Anollés Derek, Caetano-Anollés Gustavo
Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, IL, USA.
Front Genet. 2012 Aug 7;3:147. doi: 10.3389/fgene.2012.00147. eCollection 2012.
The intricate molecular and cellular structure of organisms converts energy to work, which builds and maintains structure. Evolving structure implements modules, in which parts are tightly linked. Each module performs characteristic functions. In this work we propose that a module can emerge through two phases of diversification of parts. Early in the first phase of this biphasic pattern, the parts have weak linkage-they interact weakly and associate variously. The parts diversify and compete. Under selection for performance, interactions among the parts increasingly constrain their structure and associations. As many variants are eliminated, parts self-organize into modules with tight linkage. Linkage may increase in response to exogenous stresses as well as endogenous processes. In the second phase of diversification, variants of the module and its functions evolve and become new parts for a new cycle of generation of higher-level modules. This linkage hypothesis can interpret biphasic patterns in the diversification of protein domain structure, RNA and protein shapes, and networks in metabolism, codes, and embryos, and can explain hierarchical levels of structural organization that are widespread in biology.
生物体复杂的分子和细胞结构将能量转化为功,从而构建并维持结构。不断进化的结构实现了模块,其中各部分紧密相连。每个模块执行特定的功能。在这项工作中,我们提出一个模块可以通过部分多样化的两个阶段出现。在这种双相模式的第一阶段早期,各部分之间的联系较弱——它们相互作用微弱且组合方式多样。各部分多样化并相互竞争。在对性能的选择下,各部分之间的相互作用越来越多地限制它们的结构和组合方式。随着许多变体被淘汰,各部分自组织成联系紧密的模块。联系可能会因外源性压力以及内源性过程而增加。在多样化的第二阶段,模块及其功能的变体不断进化,并成为生成更高级别模块新周期的新部分。这种联系假说可以解释蛋白质结构域结构、RNA和蛋白质形状以及代谢、编码和胚胎网络多样化中的双相模式,并能解释生物学中广泛存在的结构组织层次。