Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
J Mol Evol. 2012 Feb;74(1-2):1-34. doi: 10.1007/s00239-011-9480-1. Epub 2012 Jan 1.
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
现代生物化学的复杂性是在早期地球上逐渐发展起来的,新的分子和结构充斥着新兴的细胞系统。在这里,我们利用 420 个基因组序列中的系统发生基因组学信息,生成了关于原始蛋白质、辅助因子和分子功能的逐步发现的历史记录。我们专注于 54 个最古老的蛋白质结构域的结构和功能注释。我们展示了原始功能如何与折叠结构相关联,以及它们与辅助因子的相互作用如何扩展功能库。我们还揭示了原细胞膜在早期蛋白质进化中起着至关重要的作用,并表明翻译始于 RNA 和硫酯辅酶介导的氨酰化。我们的发现允许详细阐述一个早期生物化学的进化模型,该模型牢固地建立在系统发生基因组学信息以及生化、生物物理和结构知识的基础上。该模型描述了原始α-螺旋束如何稳定膜,这些膜如何被β-折叠和α-螺旋的层状排列所装饰,以及这些排列如何变得球状。古老形式的氨酰-tRNA 合成酶 (aaRS) 催化结构域和古老的非核糖体蛋白合成酶 (NRPS) 模块产生了原始的蛋白质合成,并能够在其活性部位生成特异性的密码。这些结构的多样化产生了辅助因子结合的分子开关和桶状结构。结构域和分子的积累产生了现代的 aaRS、NRPS 和核糖体集合,首先围绕新出现的辅助因子(tRNA 和载体蛋白)组织,然后是更复杂的辅助因子结构(rRNA)。该模型解释了蛋白质结构的产生如何作为核酸的支架,并导致了现代翻译的结晶。