Suppr超能文献

遗传动力学和单细胞异质性对非标准个体化癌症医学策略发展的影响。

Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer.

机构信息

Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14586-91. doi: 10.1073/pnas.1203559109. Epub 2012 Aug 13.

Abstract

Cancers are heterogeneous and genetically unstable. Current practice of personalized medicine tailors therapy to heterogeneity between cancers of the same organ type. However, it does not yet systematically address heterogeneity at the single-cell level within a single individual's cancer or the dynamic nature of cancer due to genetic and epigenetic change as well as transient functional changes. We have developed a mathematical model of personalized cancer therapy incorporating genetic evolutionary dynamics and single-cell heterogeneity, and have examined simulated clinical outcomes. Analyses of an illustrative case and a virtual clinical trial of over 3 million evaluable "patients" demonstrate that augmented (and sometimes counterintuitive) nonstandard personalized medicine strategies may lead to superior patient outcomes compared with the current personalized medicine approach. Current personalized medicine matches therapy to a tumor molecular profile at diagnosis and at tumor relapse or progression, generally focusing on the average, static, and current properties of the sample. Nonstandard strategies also consider minor subclones, dynamics, and predicted future tumor states. Our methods allow systematic study and evaluation of nonstandard personalized medicine strategies. These findings may, in turn, suggest global adjustments and enhancements to translational oncology research paradigms.

摘要

癌症具有异质性和遗传不稳定性。目前的个性化医疗实践根据同一器官类型的癌症之间的异质性来调整治疗方法。然而,它尚未系统地解决单个个体癌症内部的单细胞水平的异质性,也未能解决由于遗传和表观遗传变化以及暂时的功能变化导致的癌症的动态性质。我们开发了一种个性化癌症治疗的数学模型,该模型纳入了遗传进化动力学和单细胞异质性,并对模拟的临床结果进行了检验。对一个说明性病例和一个超过 300 万可评估“患者”的虚拟临床试验的分析表明,与当前的个性化医疗方法相比,增强的(有时是违反直觉的)非标准个性化医疗策略可能会导致更好的患者结果。目前的个性化医疗方法在诊断时以及肿瘤复发或进展时根据肿瘤的分子特征来匹配治疗方法,通常侧重于样本的平均值、静态和当前特性。非标准策略还考虑了次要亚克隆、动态和预测的未来肿瘤状态。我们的方法允许对非标准的个性化医疗策略进行系统的研究和评估。这些发现反过来又可能对转化肿瘤学研究范式提出全面的调整和改进。

相似文献

1
Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14586-91. doi: 10.1073/pnas.1203559109. Epub 2012 Aug 13.
2
Long range personalized cancer treatment strategies incorporating evolutionary dynamics.
Biol Direct. 2016 Oct 22;11(1):56. doi: 10.1186/s13062-016-0153-2.
5
Practical aspects of NGS-based pathways analysis for personalized cancer science and medicine.
Oncotarget. 2016 Aug 9;7(32):52493-52516. doi: 10.18632/oncotarget.9370.
6
Future of personalized medicine in oncology: a systems biology approach.
J Clin Oncol. 2010 Jun 1;28(16):2777-83. doi: 10.1200/JCO.2009.27.0777. Epub 2010 Apr 20.
7
One mouse, one patient paradigm: New avatars of personalized cancer therapy.
Cancer Lett. 2014 Mar 1;344(1):1-12. doi: 10.1016/j.canlet.2013.10.010. Epub 2013 Oct 22.
8
Navigating cancer network attractors for tumor-specific therapy.
Nat Biotechnol. 2012 Sep;30(9):842-8. doi: 10.1038/nbt.2345.
9
Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
Acc Chem Res. 2019 Aug 20;52(8):2113-2123. doi: 10.1021/acs.accounts.9b00192. Epub 2019 Jul 11.
10
Exploiting tumor vulnerabilities: epigenetics, cancer metabolism and the mTOR pathway in the era of personalized medicine.
Cancer Res. 2013 Jul 15;73(14):4185-9. doi: 10.1158/0008-5472.CAN-13-0512. Epub 2013 May 17.

引用本文的文献

1
A Proof-of-Concept Clinical Trial Design for Evolutionary Guided Precision Medicine for Cancer.
medRxiv. 2025 May 23:2025.05.23.25328210. doi: 10.1101/2025.05.23.25328210.
2
3
Generalized Evolutionary Classifier for Evolutionary Guided Precision Medicine.
JCO Precis Oncol. 2025 Mar;9:e2300714. doi: 10.1200/PO.23.00714. Epub 2025 Mar 13.
4
Exploring Single-Probe Single-Cell Mass Spectrometry: Current Trends and Future Directions.
Anal Chem. 2025 Mar 11;97(9):4750-4762. doi: 10.1021/acs.analchem.4c06824. Epub 2025 Feb 25.
6
Neutral evolution of rare cancer mutations in the computer and the clinic.
NPJ Syst Biol Appl. 2024 Oct 2;10(1):110. doi: 10.1038/s41540-024-00436-3.
7
Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer.
Endocrinology. 2023 Nov 2;164(12). doi: 10.1210/endocr/bqad159.
8
Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer.
bioRxiv. 2023 Aug 22:2023.08.21.554116. doi: 10.1101/2023.08.21.554116.
9
Intratumoral Heterogeneity in Lung Cancer.
Cancers (Basel). 2023 May 11;15(10):2709. doi: 10.3390/cancers15102709.
10
Intratumoral and Microenvironmental Heterogeneity in Patient Outcome Prediction.
JCO Precis Oncol. 2023 Feb;7:e2200698. doi: 10.1200/PO.22.00698.

本文引用的文献

1
The clonal and mutational evolution spectrum of primary triple-negative breast cancers.
Nature. 2012 Apr 4;486(7403):395-9. doi: 10.1038/nature10933.
2
3
Tumor heterogeneity and personalized medicine.
N Engl J Med. 2012 Mar 8;366(10):956-7. doi: 10.1056/NEJMe1200656.
4
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.
N Engl J Med. 2012 Mar 8;366(10):883-892. doi: 10.1056/NEJMoa1113205.
5
Translational medicine: Primed for resistance.
Nature. 2012 Feb 29;483(7387):44-5. doi: 10.1038/483044a.
6
Escaping ALK inhibition: mechanisms of and strategies to overcome resistance.
Sci Transl Med. 2012 Feb 8;4(120):120ps2. doi: 10.1126/scitranslmed.3003728.
8
Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers.
Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25.
10
A novel retinoblastoma therapy from genomic and epigenetic analyses.
Nature. 2012 Jan 11;481(7381):329-34. doi: 10.1038/nature10733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验