Suppr超能文献

肿瘤个性化医学的未来:系统生物学方法。

Future of personalized medicine in oncology: a systems biology approach.

机构信息

Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA.

出版信息

J Clin Oncol. 2010 Jun 1;28(16):2777-83. doi: 10.1200/JCO.2009.27.0777. Epub 2010 Apr 20.

Abstract

The development of cost-effective technologies able to comprehensively assess DNA, RNA, protein, and metabolites in patient tumors has fueled efforts to tailor medical care. Indeed validated molecular tests assessing tumor tissue or patient germline DNA already drive therapeutic decision making. However, many theoretical and regulatory challenges must still be overcome before fully realizing the promise of personalized molecular medicine. The masses of data generated by high-throughput technologies are challenging to manage, visualize, and convert to the knowledge required to improve patient outcomes. Systems biology integrates engineering, physics, and mathematical approaches with biologic and medical insights in an iterative process to visualize the interconnected events within a cell that determine how inputs from the environment and the network rewiring that occurs due to the genomic aberrations acquired by patient tumors determines cellular behavior and patient outcomes. A cross-disciplinary systems biology effort will be necessary to convert the information contained in multidimensional data sets into useful biomarkers that can classify patient tumors by prognosis and response to therapeutic modalities and to identify the drivers of tumor behavior that are optimal targets for therapy. An understanding of the effects of targeted therapeutics on signaling networks and homeostatic regulatory loops will be necessary to prevent inadvertent effects as well as to develop rational combinatorial therapies. Systems biology approaches identifying molecular drivers and biomarkers will lead to the implementation of smaller, shorter, cheaper, and individualized clinical trials that will increase the success rate and hasten the implementation of effective therapies into the clinical armamentarium.

摘要

开发具有成本效益的技术,能够全面评估患者肿瘤中的 DNA、RNA、蛋白质和代谢物,这推动了医疗保健个性化的努力。事实上,经过验证的评估肿瘤组织或患者种系 DNA 的分子检测已经可以驱动治疗决策。然而,在充分实现个性化分子医学的承诺之前,仍有许多理论和监管方面的挑战需要克服。高通量技术产生的大量数据在管理、可视化和转化为改善患者预后所需的知识方面具有挑战性。系统生物学将工程学、物理学和数学方法与生物学和医学见解相结合,以迭代的方式可视化细胞内的相互关联事件,这些事件决定了来自环境的输入以及由于患者肿瘤获得的基因组异常而发生的网络重排如何决定细胞行为和患者结局。需要跨学科的系统生物学努力,才能将多维数据集包含的信息转化为有用的生物标志物,这些生物标志物可以根据预后和对治疗方式的反应对患者肿瘤进行分类,并确定肿瘤行为的驱动因素,这些因素是治疗的最佳靶点。需要了解靶向治疗对信号网络和体内平衡调节环的影响,以防止意外影响,并开发合理的组合疗法。确定分子驱动因素和生物标志物的系统生物学方法将导致实施更小、更短、更便宜和个性化的临床试验,这将提高成功率,并加速将有效疗法纳入临床武器库。

相似文献

1
Future of personalized medicine in oncology: a systems biology approach.肿瘤个性化医学的未来:系统生物学方法。
J Clin Oncol. 2010 Jun 1;28(16):2777-83. doi: 10.1200/JCO.2009.27.0777. Epub 2010 Apr 20.
2
4
Personalized oncology: recent advances and future challenges.个性化肿瘤学:最新进展与未来挑战。
Metabolism. 2013 Jan;62 Suppl 1:S11-4. doi: 10.1016/j.metabol.2012.08.016. Epub 2012 Sep 19.
6
Precision Medicine in Pediatric Oncology.儿科肿瘤学中的精准医学
Surg Oncol Clin N Am. 2020 Jan;29(1):63-72. doi: 10.1016/j.soc.2019.08.005. Epub 2019 Oct 29.
10
Cancer Systems Biology: a peek into the future of patient care?癌症系统生物学:展望患者护理的未来?
Nat Rev Clin Oncol. 2014 Mar;11(3):167-76. doi: 10.1038/nrclinonc.2014.6. Epub 2014 Feb 4.

引用本文的文献

6
Host-mycobiome metabolic interactions in health and disease.宿主-菌根代谢相互作用与健康和疾病。
Gut Microbes. 2022 Jan-Dec;14(1):2121576. doi: 10.1080/19490976.2022.2121576.
7
A Systems Approach to Brain Tumor Treatment.一种脑肿瘤治疗的系统方法。
Cancers (Basel). 2021 Jun 24;13(13):3152. doi: 10.3390/cancers13133152.

本文引用的文献

5
Gene-expression signatures in breast cancer.乳腺癌中的基因表达特征
N Engl J Med. 2009 Feb 19;360(8):790-800. doi: 10.1056/NEJMra0801289.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验